Maximum transportation growth in energy and solute particles in Prandtl martial across a vertical 3D-heated surface: Simulations achieved using by finite element approach
Abstract
The goal of this study is to determine the maximum energy and solute particles' transportation growth in a 3D-heated region of Prandtl martial through a dynamic magnetic field. The effects of this field on the properties of solvent molecules and heat conduction are studied. A correctly stated functional method and a finite element approach are comparable to a certain type of differential equations. In order demonstrate the effects of various factors such as mass diffusion, heat generation, and thermal diffusivity on the investigation of the diffusion coefficient and thermal mass in a three-dimensional Newtonian flow, the study of viscous and heat conduction rates is presented. The results show that the comparisons of hybrid nanofluid and with base fluid and w.r.t Local skin friction coefficient, Nusselt number and Sherwood number.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
COMPUTERS & MATHEMATICS WITH APPLICATIONS
no. 133,
pages 48 - 60,
ISSN: 0898-1221 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Hafeez M. B., Krawczuk M., Jamshed W.: Maximum transportation growth in energy and solute particles in Prandtl martial across a vertical 3D-heated surface: Simulations achieved using by finite element approach// COMPUTERS & MATHEMATICS WITH APPLICATIONS -Vol. 133, (2023), s.48-60
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.camwa.2022.11.027
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 96 times
Recommended for you
A pore-scale thermo–hydro-mechanical model for particulate systems
- R. Caulk,
- L. Sholtès,
- M. Krzaczek
- + 1 authors
Significant Production of Thermal Energy in Partially Ionized Hyperbolic Tangent Material Based on Ternary Hybrid Nanomaterials
- U. Nazir,
- M. Sohail,
- M. B. Hafeez
- + 1 authors