Microwave-assisted preparation of potato starch silicated with silicic acid - Publication - Bridge of Knowledge

Search

Microwave-assisted preparation of potato starch silicated with silicic acid

Abstract

Application of microwave irradiation for the silication of granular potato starch with silicic acid, and the properties of silicated starch were investigated. Potato starch was esterified on 20 min microwave irradiation of starch with silicic acid, applying the power of 450 or 800Wand, for comparison, on 120 min convectional heating of the reagent blend at 100 ◦C. The degree of esterification and the reaction efficiency did not depend on the silication mode, but they increased with increasing power of the microwave irradiation. The degree of esterification increased with the reagent ratio. The esterification provided either monoesters or crosslinked esters of retained granularity, insignificantly disrupted crystallinity, and high hydrophobicity. An increased dose of silicic acid in the reaction mixtures provided thermally more stable crosslinked esters.

Citations

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cite as

Full text

download paper
downloaded 165 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CARBOHYDRATE POLYMERS no. 81, pages 599 - 606,
ISSN: 0144-8617
Language:
English
Publication year:
2010
Bibliographic description:
Staroszczyk H., Janas P.: Microwave-assisted preparation of potato starch silicated with silicic acid// CARBOHYDRATE POLYMERS. -Vol. 81, nr. 3 (2010), s.599-606
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.carbpol.2010.03.017
Bibliography: test
  1. Bélard, L., Dole, P., & Avérous, L. (2005). Current progress on biodegradable materials based on plasticized starch. Australian Journal of Chemistry, 58, 457-460. open in new tab
  2. Bellon-Maurel, V., Vallat, C., & Goffinet, D. (1995). Quantitative analysis of individual sugars during starch hydrolysis by FT-IR/ATR spectrometry. Part I: Multivari- ate calibration study-repeatibility and reproducibility. Applied Spectroscopy, 49, 556-562. open in new tab
  3. Cael, J. J., Koenig, J. L., & Blackwell, J. (1975). Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V-amylose. Biopolymers, 14, 1885-1903. open in new tab
  4. Gerard, C., Colonna, P., Buleon, A., & Planchot, V. (2001). Amylolysis of maize mutant starches. Journal of the Science of Food and Agriculture, 81, 1281-1287. open in new tab
  5. Kappe, C. O., & Dallinger, D. (2009). Controlled microwave heating in modern organic synthesis: Highlights form the 2004-2008 literature. Molecular Diversity, 13, 71-193. open in new tab
  6. Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3912-3918. open in new tab
  7. Lewandowicz, G., Fornal, J., Walkowski, A., Mączyński, M., Urbaniak, G., & Szymańska, G. (2000). Starch esters obtained by microwave irradiation-structure and func- tionality. Industrial Crops and Products, 11, 249-257. open in new tab
  8. Lii, C. Y., Chen, H. H., Lu, S., & Tomasik, P. (2003a). Electrosynthesis k-carrageenan complexes with gelatin. Journal of Polymer and the Environment, 11, 115-121. open in new tab
  9. Lii, C. Y., Chen, H. H., Lu, S., & Tomasik, P. (2003b). Electrosynthesis of k- carrageenan-ovalbumin complexes. International Journal of Food Science and Technology, 38, 787-793. open in new tab
  10. Lii, C. Y., Liaw, S. C., Lai, V. M.-F., & Tomasik, P. (2002). Xanthan gum-gelatin com- plexes. European Polymer Journal, 38, 1377-1381. open in new tab
  11. Lii, C. Y., Liaw, S. C., & Tomasik, P. (2003). Xanthan gum-ovoalbumin complexes. Polish Journal of Food and Nutrition Sciences, 12(3), 25-29. open in new tab
  12. Lii, Ch-y., Tomasik, P., Zaleska, H., Liaw, S.-Ch., & Lai, M.-F. (2002). Carboxymethyl cellulose-gelatin complexes. Carbohydrate Polymers, 50, 19-26. open in new tab
  13. Lii, C. Y., Zaleska, H., & Tomasik, P. (2002). Electrosynthesis of carboxymethyl cellulose-ovoalbumin complexes. Journal of Food Engineering, 53, 249-257. open in new tab
  14. Mao, G.-J., Wang, P., Meng, X.-S., Zhang, X., & Zheng, T. (2006). Crosslinking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. Journal of Applied Polymer Science, 102, 5854-5860.
  15. Najgebauer, D., Grega, T., Sady, M., & Tomasik, P. (2003). Polymeric complexes from casein and starch phosphate: Characteristics and enzyme susceptibility. Journal of Polymer and the Environment, 12, 17-25.
  16. Najgebauer, D., Grega, T., Sady, M., & Tomasik, P. (2004). Polymeric complexes of cornstarch and waxy cornstarch phosphates with milk casein and their perfor- mance as biodegradable materials. Molecules, 9, 550-567. open in new tab
  17. Namazi, H., Mosadegh, M., & Dadkhah, A. (2009). New intercalated layer nanocom- posites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study. Carbohydrate Poly- mers, 75, 665-669. open in new tab
  18. Neves, G. M., Lenza, R. F. S., & Vasconcelos, W. L. (2002). Evaluation of the influence of microwaves in the structure of silica gels. Materials Research, 5, 447-451. open in new tab
  19. Park, H.-M., Lee, W.-K., Park, Ch.-Y., Cho, W.-J., & Ha, Ch.-S. (2003). Environmentally friendly polymer hybrids. Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposities. Journal of Materials Science, 38, 909-915. open in new tab
  20. Rhim, J.-W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47, 411-433. open in new tab
  21. Richter, M., Augustat, S., & Schierbaum, F. (1968). Ausgewählte Methoden der Stärke- chemie. Leipzig: VEB Fachbuch Verlag.
  22. Rutiaga, M. O., Galan, L. J., Morales, L. H., Gordon, S. H., Imam, S. H., Orts, W. J., et al. (2005). Mechanical property and biodegradability of cast films prepared from blends of oppositely charged biopolymers. Journal of Polymers and the Environ- ment, 13(2), 185-191. open in new tab
  23. Sekkal, M., Dincq, V., Legrand, P., & Huvenne, J. P. (1995). Investigation of the glycosidic linkages in several oligosaccharides using FT-IR and FT Raman spec- troscopies. Journal of Molecular Structure, 349, 349-352. open in new tab
  24. Smits, A. L. M., Ruhnau, F. C., Vliegenthart, J. F. G., van Soest, U., & J.J.G. (1998). Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch/Stärke, 50, 478-483. open in new tab
  25. Staroszczyk, H. (2009a). Microwave-assisted boration of potato starch. Polimery, 54, 31-41. open in new tab
  26. Staroszczyk, H. (2009b). Microwave-assisted silication of potato starch. Carbohy- drate Polymers, 77, 506-515. open in new tab
  27. Staroszczyk, H., Fiedorowicz, M., Zhong, W., Janas, P., & Tomasik, P. (2007). Microwave-assisted solid-state sulphation of starch. e-Polymers, 140. open in new tab
  28. Staroszczyk, H., & Janas, P. (2010). Microwave-assisted synthesis of zinc derivatives of potato starch. Carbohydrate Polymers, 80, 962-969. open in new tab
  29. Staroszczyk, H., & Tomasik, P. (2005). Facile synthesis of potato starch sulfate mag- nesium salts. e-Polymers, 080. open in new tab
  30. Staroszczyk, H., Tomasik, P., Janas, P., & Poreda, A. (2007). Esterification of starch with sodium selenite and selenate. Carbohydrate Polymers, 69, 299-304. open in new tab
  31. Tang, X., Alavi, S., & Herald, T. J. (2008). Effects of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydrate Polymers, 74, 552-558. open in new tab
  32. Tang, S., Zou, P., Xiong, H., & Tang, H. (2008). Effect of nano-SiO2 on the per- formance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers, 72, 521-526. open in new tab
  33. Tolstoguzov, V. B. (1986). Functional properties of protein-polysaccharide mixtures. In J. R. Mitchell, & D. A. Ledward (Eds.), Functional properties of food macro- molecules (pp. 385-415). London: Elsevier Applied Science.
  34. Tomasik, P., & Schilling, Ch. H. (2004). Chemical modification of starch. Advances in Carbohydrate Chemistry and Biochemistry, 59, 175-403. open in new tab
  35. Uchino, T., Sakka, T., Hotta, K., & Iwasaki, M. (1989). Attenuated total reflectance Fourier-transform infrared spectra of a hydrated sodium silicate glass. Journal of the American Ceramic Society, 72, 2173-2175. open in new tab
  36. Uchino, T., Sakka, T., & Iwasaki, M. (1991). Interpretation of hydrated states of sodium silicate glasses by infrared and Raman analysis. Journal of the American Ceramic Society, 74, 306-313. open in new tab
  37. Wilhelm, H.-M., Sierakowski, M.-R., Souza, G. P., & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52, 101-110. open in new tab
  38. Wilson, R. H., & Belton, P. S. (1988). A Fourier-transform infrared study of wheat starch gels. Carbohydrate Research, 180, 339-344. open in new tab
  39. Wilson, R. H., Goodfellow, B. J., & Belton, P. (1988). Fourier transform infrared spectroscopy for the study of food biopolymers. Food Hydrocolloids, 2, 169-178. open in new tab
  40. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31, 576-602. open in new tab
  41. Zaleska, H., Ring, S. G., & Tomasik, P. (2000). Apple pectin complexes with whey protein isolate. Food Hydrocolloids, 14, 377-382. open in new tab
  42. Zaleska, H., Ring, S. G., & Tomasik, P. (2001). Complexes of potato starch with casein. International Journal of Food Science and Technology, 36, 509-515. open in new tab
  43. Zaleska, H., Ring, S., & Tomasik, P. (2001). Electrosynthesis of potato starch-whey protein isolate complexes. Carbohydrate Polymers, 45, 89-94. open in new tab
  44. Zaleska, H., Tomasik, P., & Lii, Ch-y. (2002). Formation of carboxymethyl cellulose- casein complexes by electrosynthesis. Food Hydrocolloids, 16, 215-224. open in new tab
  45. Zhao, R., Torley, P., & Halley, P. J. (2008). Emerging biodegradable materials: Starch-and protein-based bio-nanocomposites. Journal of Materials Science, 43, 3058-3071. open in new tab
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags