Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides - Publication - Bridge of Knowledge

Search

Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides

Abstract

Shelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate the molecular basis of these interactions, we employed molecular dynamics (MD) simulations of TRF1TRFH-TIN2TBM and TRF2TRFH-TIN2TBM/ApolloTBM complexes and of the isolated proteins. MD enabled a structural and dynamical comparison of protein–peptide complexes including H-bond interactions and interfacial residues that may regulate TRF protein binding to the given peptides, especially focusing on interactions described in crystallographic data. Residues with a selective function in both TRF1TRFH and TRF2TRFH and forming a stable hydrogen bond network with TIN2TBM or ApolloTBM peptides were traced. Our study revealed that TIN2TBM forms a well-defined binding mode with TRF1TRFH as compared to TRF2TRFH, and that the binding pocket of TIN2TBM is deeper for TRF2TRFH protein than ApolloTBM. The MD data provide a basis for the reinterpretation of mutational data obtained in crystallographic work for the TRF proteins. Together, the previously determined X-ray structure and our MD provide a detailed view of the TRF–peptide binding mode and the structure of TRF1/2 binding pockets. Particular TRF–peptide interactions are very specific for the formation of each protein–peptide complex, identifying TRF proteins as potential targets for the design of inhibitors/ drugs modulating telomere machinery for anticancer therapy.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 78 times
Publication version
Accepted or Published Version
License
Copyright (European Biophysical Societies’ Association 2016)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS no. 46, edition 2, pages 171 - 187,
ISSN: 0175-7571
Language:
English
Publication year:
2017
Bibliographic description:
Umesh K., Monikaben P., Bagiński M.: Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides// EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS. -Vol. 46, iss. 2 (2017), s.171-187
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00249-016-1157-7
Bibliography: test
  1. Arfken G (1985) the method of steepest descents. Mathematical methods for physicists, (ed) Orlando: Academic Press, Vol. 3. pp 428-436 open in new tab
  2. Baumann P, Cech T (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171-1175 open in new tab
  3. Bianchi A, Smith S, Chong L, Elias P, deLange T (1997) TRF1 is a dimer and bends telomeric DNA. EMBO J 16:1785-1794 open in new tab
  4. Bianchi A, Stansel R, Fairall L, Griffith J, Rhodes D, deLange T (1999) TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J 18:5735-5744 open in new tab
  5. Bidzinska J, Baginski M, Skladanowski A (2014) Novel anticancer strategy aimed at targeting shelterin complexes by the induction of structural changes in telomeric DNA: hitting two birds with one stone. Curr Cancer Drug Targets 14:201-216 open in new tab
  6. Bjelkmar P, Larsson P, Cuendet M, Hess B, Lindahl E (2010) Imple- mentation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interac- tion sites, and water models. J Chem Theory Comput 6:459-466 open in new tab
  7. Bone S, Pethig R (1985) Dielectric studies of protein hydration and hydration-induced flexibility. J Mol Biol 181:323-326 open in new tab
  8. Broccoli D, Smogorzewska A, Chong L, deLange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17:231-235 open in new tab
  9. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101 open in new tab
  10. Chen Y, Yang Y, Overbeek M, Donigian J, Baciu P, deLange T, Lei M (2008) A shared docking motif in TRF1 and TRF2 used for differ- ential recruitment of telomeric proteins. Science 319:1092-1096 open in new tab
  11. Chuang H, Chen C, Huang C, Fang F, Tsai H, Chien C (2011) Reduced expression of TRF1 is associated with tumor progres- sion and poor prognosis in oral squamous cell carcinoma. Exp Ther Med 2:63-67 open in new tab
  12. Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6:39-45 open in new tab
  13. Dagliyan O, Proctor E, D'Auria K, Ding F, Dokholyan N (2011) Structural and dynamic determinants of protein-peptide recogni- tion. Structure 19:1837-1845 open in new tab
  14. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089-10092 open in new tab
  15. deLange T (2005) Shelterin: the protein complex that shapes and safe- guards human telomeres. Genes Dev 19:2100-2110
  16. Diehl M, Idowu M, Kimmelshue K, York T, Jackson-Cook C, Turner K, Holt S, Elmore L (2011) Elevated TRF2 in advanced breast cancers with short telomeres. Breast Cancer Res Treat 127:623-630 open in new tab
  17. DiMaro S, Zizza P, Salvati E, DeLuca V, Capasso C, Fotticchia I, Pagano B, Marinelli L, Gilson E, Novellino E, Cosconati S, Biroccio A (2014) Shading the TRF2 recruiting function: a new horizon in drug development. J Am Chem Soc 136:16708-16711 open in new tab
  18. Fairall L, Chapman L, Moss H, de Lange T, Rhodes D (2001) Struc- ture of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol Cell 8:351-361 open in new tab
  19. Frescas D, deLange T (2014) TRF2-tethered TIN2 can mediate tel- omere protection by TPP1/POT1. Mol Cell Biol 34:1349-1362 open in new tab
  20. Gilis D, Rooman M (1996) Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database derived potentials. J Mol Biol 257:1112-1126 open in new tab
  21. Hanaoka S, Nagadoi A, Nishimura Y (2005) Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci 14:119-130 open in new tab
  22. Hess B, Bekker H, Beredensen H, Faraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463-1472 open in new tab
  23. Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algo- rithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435-447 open in new tab
  24. Hu H, Zhang Y, Zou M, Yang S, Liang X (2010) Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1 proteins is associ- ated with telomere shortening and may contribute to multi- stage carcinogenesis of gastric cancer. J Cancer Res Clin Oncol 136:1407-1414 open in new tab
  25. Jason A, Stewart F, Chaiken W, Carolyn M (2012) Maintaining the end: roles of telomere proteins in end-protection, telomere repli- cation and length regulation. Mut Res 730:12-19
  26. Kim S, Kaminker P, Campisi J (1999) TIN2, a new regulator of tel- omere length in human cells. Nature Genet 23:405-412 open in new tab
  27. Kim H, Lee O, Xin H, Chen L, Qin J, Chae H, Lin S, Safari A, Liu D, Songyang Z (2009) TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat Struct Mol Biol 16:372-379 open in new tab
  28. Lei M, Podell E, Cech T (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromo- some end-protection. Nat Struct Mol Biol 11:1223-1229 open in new tab
  29. Liu D, O'Connor M, Qin J, Songyang Z (2004) Telosome, a mamma- lian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279:51338-51342 open in new tab
  30. Makov G, Payne M (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B: Condens Matter 51:4014-4022 open in new tab
  31. Okamoto K, Iwano T, Tachibana M, Shinkai Y (2008) Distinct Roles of TRF1 in the Regulation of telomere Structure and Lengthen- ing. J Biol Chem 283:23981-23988 open in new tab
  32. Sheu S, Yang D, Selzle H, Schlag E (2003) Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci USA 100:12683-12687 open in new tab
  33. Shrake A, Rupley J (1973) Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 79:351-371 open in new tab
  34. Smogorzewska A, vanSteensel B, Bianchi A, Oelmann S, Schaefer M, Schnapp G, deLange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659-1668 open in new tab
  35. Takano K, Yamagata Y, Yutani K (2003) Buried water molecules con- tribute to the conformational stability of a protein. Protein Eng 16:5-9 open in new tab
  36. vanGunsteren W, Mark A (1992) On the interpretation of biochemi- cal data by molecular dynamics computer simulation. Eur J Bio- chem 204:947-961 open in new tab
  37. vanSteensel B, Smogorzewska A, deLange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401-413 open in new tab
  38. Walker J, Zhu X (2012) Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech Ageing Dev 133:421-434 open in new tab
  39. Weisi L, Zhang Y, Liu D, Songyanga Z, Wanb M (2013) Telomeres- structure, function, and regulation. Exp Cell Res 319:133-141
  40. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W, O'Connor M, Mat- thew S, Zhou S (2007) TPP1 is a homologue of ciliate TEBP- beta and interacts with POT1 to recruit telomerase. Nature 445:559-562 open in new tab
  41. Ye J, Hockemeyer D, Krutchinsky A, Loayza D, Hooper S, Chait B, deLange T (2004a) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Develop 18:1649-1654 open in new tab
  42. Ye J, Donigian J, vanOverbeek M, Loayza D, Luo Y, Krutchinsky A, Chait B, deLange T (2004b) TIN2 Binds TRF1 and TRF2 Simul- taneously and Stabilizes the TRF2 Complex on telomeres. J Biol Chem 279:47264-47271 open in new tab
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags