Nanoparticle-assisted biohydrogen production from pretreated food industry wastewater sludge: Microbial community shifts in batch and continuous processes
Abstract
Biohydrogen production from industrial waste has gained a significant attention as a sustainable energy source. In this study, the enrichment of biohydrogen production from pretreated dissolved air flotation (DAF) sludge, generated from food industry wastewater treatment plants, was investigated using SiO2@Cu-Ag dendrites cor- e–shell nanostructure (NS). The effect of NS on the changes of the microbial community and biohydrogen yield was evaluated through batch and continuous tests. In batch mode, various nanomaterial doses were investigated with several concentrations ranging from 20 to 50 mg/L for hydrogen production using glucose as a substrate. The optimum core–shell NS amount was 40 mg/L, achieving a maximum H2 yield of 163 mL/g volatile solids (VS) compared to the control’s 79 mL/g VS. However, 50 mg/L NS inhibited most bacteria in the sludge. The continuous experiment used a continuous stirring tank reactor (CSTR) with 40 mg/L SiO2@Cu-Ag core–shell NS and pretreated industrial sludge as substrate. The H2 yield increased to 115 L/kg VS compared to the control reactor’s 89 L/kg VS. The gas analysis showed compositional proportions of 83 % H2, 7 % CO2, and 4.5 % methane, while the microbial community analysis indicated the development of hydrogen-producing species such as Clostridium. In conclusion, SiO2@Cu-Ag core–shell NS addition enhanced anaerobic degradation of organic matter and its conversion to biohydrogen. The selected nanomaterial can be used for an effective continuous treatment system for industrial sludge while promoting dark fermentation.
Citations
-
1 3
CrossRef
-
0
Web of Science
-
1 4
Scopus
Authors (6)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
ENERGY CONVERSION AND MANAGEMENT
no. 299,
ISSN: 0196-8904 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Saad Hellal M., Gamoń F., Cema G., Hassan G. K., Gehad G. M., Ziembińska-Buczyńska A.: Nanoparticle-assisted biohydrogen production from pretreated food industry wastewater sludge: Microbial community shifts in batch and continuous processes// ENERGY CONVERSION AND MANAGEMENT -Vol. 299, (2024), s.117824-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.enconman.2023.117824
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 123 times
Recommended for you
Iron (Magnetite) Nanoparticle-Assisted Dark Fermentation Process for Continuous Hydrogen Production from Rice Straw Hydrolysate
- J. Pérez-Barragán,
- C. Martínez-Fraile,
- R. Muñoz
- + 5 authors
Brewery spent grain valorization through fermentation: Targeting biohydrogen, carboxylic acids and methane production
- J. Pérez-Barragán,
- C. Martínez-Fraile,
- R. Muñoz
- + 5 authors
Feasibility Study of Biohydrogen Production from Acid Cheese Whey via Lactate-Driven Dark Fermentation
- B. Aranda-Jaramillo,
- E. León-Becerril,
- O. Aguilar-Juárez
- + 2 authors