Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent - Publication - Bridge of Knowledge

Search

Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent

Abstract

Cerium molybdenum oxide hydrate microflakes are codeposited with nickel from a deep eutectic solvent-based bath. During seven days of exposure in 0.05 M NaCl solution, the corrosion resistance of composite coating (Ni/CeMoOxide) is slightly reduced, due to the existence of some microcracks caused by large microflakes. Multielemental analysis of the solution, in which coatings are exposed and the qualitative changes in the surface chemistry (XPS) show selective etching molybdenum from microflakes. The amount of various molybdenum species within the surface of coating nearly completely disappear, due to the corrosion process. Significant amounts of Ce3+ compounds are removed, however the corrosion process is less selective towards the cerium, and the overall cerium chemistry remains unchanged. Initially, blank Ni coatings are covered by NiO and Ni(OH)2 in an atomic ratio of 1:2. After exposure, the amount of Ni(OH)2 increases in relation to NiO (ratio 1:3). For the composite coating, the atomic ratios of both forms of nickel vary from 1:0.8 to 1:1.3. Despite achieving lower corrosion resistance of the composite coating, the applied concept of using micro-flakes, whose skeleton is a system of Ce(III) species and active form are molybdate ions, may be interesting for applications in materials with potential self-healing properties.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 93 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 17,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Winiarski J., Niciejewska A., Ryl J., Darowicki K., Baśladyńska S., Winiarska K., Szczygieł B.: Ni/cerium Molybdenum Oxide Hydrate Microflakes Composite Coatings Electrodeposited from Choline Chloride: Ethylene Glycol Deep Eutectic Solvent// Materials -Vol. 13,iss. 4 (2020), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13040924
Bibliography: test
  1. Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 2006, 8, 4265-4279. [CrossRef] [PubMed] open in new tab
  2. Abbott, A.; Frisch, G.; Ryder, K. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335-358. [CrossRef] open in new tab
  3. Simka, W.; Puszczyk, D.; Nawrat, G. Electrodeposition of metals from non-aqueous solutions. Electrochimica Acta 2009, 54, 5307-5319. [CrossRef] open in new tab
  4. Liu, F.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Electrodeposition of metals and alloys from ionic liquids. J. Alloy. Compd. 2016, 654, 163-170. [CrossRef] open in new tab
  5. Abbott, A.; Boothby, D.; Capper, G.; Davies, D.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142-9147. [CrossRef] open in new tab
  6. Smith, E.L.; Abbott, A.; Ryder, K. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060-11082. [CrossRef] open in new tab
  7. Abbott, A.; Ballantyne, A.; Harris, R.; Juma, J.A.; Ryder, K.; Forrest, G. A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta 2015, 176, 718-726. [CrossRef] open in new tab
  8. Wang, S.; Zou, X.; Lu, Y.; Rao, S.; Xie, X.; Pang, Z.; Lu, X.; Xu, Q.; Zhou, Z. Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2018, 43, 15673-15686. [CrossRef] open in new tab
  9. Abbott, A.; El Ttaib, K.; Ryder, K.; Smith, E.L. Electrodeposition of nickel using eutectic based ionic liquids. Trans. IMF 2008, 86, 234-240. [CrossRef] open in new tab
  10. Abbott, A.; Ballantyne, A.; Harris, R.; Juma, J.A.; Ryder, K. Bright metal coatings from sustainable electrolytes: The effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Phys. Chem. Chem. Phys. 2017, 19, 3219-3231. [CrossRef] open in new tab
  11. Cherigui, E.A.M.; Sentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. On the Control and Effect of Water Content during the Electrodeposition of Ni Nanostructures from Deep Eutectic Solvents. J. Phys. Chem. C 2018, 122, 23129-23142. [CrossRef] open in new tab
  12. Fashu, S.; Gu, C.; Zhang, J.; Huang, M.-L.; Wang, X.-L.; Gu, C. Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid. Trans. Nonferrous Met. Soc. China 2015, 25, 2054-2064. [CrossRef] open in new tab
  13. Vijayakumar, J.; Mohan, S.; Kumar, S.A.; Suseendiran, S.; Pavithra, S. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2013, 38, 10208-10214. [CrossRef] open in new tab
  14. Yanai, T.; Shiraishi, K.; Watanabe, Y.; Nakano, M.; Ohgai, T.; Suzuki, K.; Fukunaga, H. Electroplated Fe-Ni Films Prepared From Deep Eutectic Solvents. IEEE Trans. Magn. 2014, 50, 1-4. [CrossRef] open in new tab
  15. You, Y.; Gu, C.; Wang, X.; Tu, J. Electrodeposition of Ni-Co alloys from a deep eutectic solvent. Surf. Coatings Technol. 2012, 206, 3632-3638. [CrossRef] open in new tab
  16. Golgovici, F.; Pumnea, A.; Petica, A.; Manea, A.C.; Brincoveanu, O.; Enachescu, M.; Anicai, L. Ni-Mo alloy nanostructures as cathodic materials for hydrogen evolution reaction during seawater electrolysis. Chem. Pap. 2018, 72, 1889-1903. [CrossRef] open in new tab
  17. Martis, P.; Dilimon, V.; Delhalle, J.; Mekhalif, Z. Electro-generated nickel/carbon nanotube composites in ionic liquid. Electrochimica Acta 2010, 55, 5407-5410. [CrossRef] open in new tab
  18. Liu, D.; Sun, J.; Gui, Z.; Song, K.; Luo, L.; Wu, Y. Super-low friction nickel based carbon nanotube composite coating electro-deposited from eutectic solvents. Diam. Relat. Mater. 2017, 74, 229-232. [CrossRef] open in new tab
  19. You, Y.H.; Gu, C.D.; Wang, X.L.; Tu, J.P. Electrochemical preparation and characterization of Ni-PTFE composite coatings from a non-aqueous solution without additives. Int. Electrochem. Sci. 2012, 7, 12440-12455. open in new tab
  20. Li, R.; Chu, Q.; Liang, J. Electrodeposition and characterization of Ni-SiC composite coatings from deep eutectic solvent. RSC Adv. 2015, 5, 44933-44942. [CrossRef] open in new tab
  21. Li, R.; Hou, Y.; Liang, J. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance. Appl. Surf. Sci. 2016, 367, 449-458. [CrossRef] open in new tab
  22. Li, R.; Hou, Y.; Liu, B.; Wang, D.; Liang, J. Electrodeposition of homogenous Ni/SiO2 nanocomposite coatings from deep eutectic solvent with in-situ synthesized SiO2 nanoparticles. Electrochimica Acta 2016, 222, 1272-1280. [CrossRef] open in new tab
  23. Protsenko, V.; Bogdanov, D.; Korniy, S.; Kityk, A.; Baskevich, A.; Danilov, F. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 24604-24616. [CrossRef] open in new tab
  24. Dong, M.; Lin, Q.; Sun, H.; Chen, D.; Zhang, T.; Wu, Q.; Li, S. Synthesis of Cerium Molybdate Hierarchical Architectures and Their Novel Photocatalytic and Adsorption Performances. Cryst. Growth Des. 2011, 11, 5002-5009. [CrossRef] open in new tab
  25. Xu, M.-K.; Ouyang, Z.-H.; Shen, Z. Topological evolution of cerium(III) molybdate microflake assemblies induced by amino acids. Chin. Chem. Lett. 2016, 27, 673-677. [CrossRef] open in new tab
  26. Ayni, S.; Sabet, M.; Salavati-Niasari, M.; Hamadanian, M. Synthesis and characterization of cerium molybdate nanostructures via a simple solvothermal method and investigation of their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2016, 27, 7342-7352. [CrossRef] open in new tab
  27. Kartsonakis, I.; Kordas, G. Synthesis and Characterization of Cerium Molybdate Nanocontainers and Their Inhibitor Complexes. J. Am. Ceram. Soc. 2010, 93, 65-73. [CrossRef] open in new tab
  28. Kartsonakis, I.; Balaskas, A.C.; Kordas, G.C. Influence of cerium molybdate containers on the corrosion performance of epoxy coated aluminium alloys 2024-T3. Corros. Sci. 2011, 53, 3771-3779. [CrossRef] open in new tab
  29. Kartsonakis, I.; Kontogiani, P.; Pappas, G.; Kordas, G. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli. J. Nanoparticle Res. 2013, 15, 1759. [CrossRef] open in new tab
  30. Patel, M.; Bhanvase, B.A.; Sonawane, S. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach. Ultrason. Sonochemistry 2013, 20, 906-913. [CrossRef] open in new tab
  31. Yasakau, K.; Kallip, S.; Zheludkevich, M.; Ferreira, M. Active corrosion protection of AA2024 by sol-gel coatings with cerium molybdate nanowires. Electrochimica Acta 2013, 112, 236-246. [CrossRef] open in new tab
  32. Yasakau, K.; Tedim, J.; Zheludkevich, M.; Drumm, R.; Shem, M.; Wittmar, M.; Veith, M.; Ferreira, M. Cerium molybdate nanowires for active corrosion protection of aluminium alloys. Corros. Sci. 2012, 58, 41-51. [CrossRef] open in new tab
  33. Lehr, I.; Saidman, S. Corrosion protection of AZ91D magnesium alloy by a cerium-molybdenum coating-The effect of citric acid as an additive. J. Magnes. Alloy. 2018, 6, 356-365. [CrossRef] open in new tab
  34. Mu, S.; Du, J.; Jiang, H.; Li, W. Composition analysis and corrosion performance of a Mo-Ce conversion coating on AZ91 magnesium alloy. Surf. Coatings Technol. 2014, 254, 364-370. [CrossRef] open in new tab
  35. Bhanvase, B.A.; Patel, M.; Sonawane, S. Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Corros. Sci. 2014, 88, 170-177. [CrossRef] open in new tab
  36. Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102-113. [CrossRef] open in new tab
  37. Urcezino, A.S.C.; Dos Santos, L.P.M.; Casciano, P.N.S.; Correia, A.N.; De Lima-Neto, P. Electrodeposition study of Ni coatings on copper from choline chloride-based deep eutectic solvents. J. Braz. Chem. Soc. 2017, 28, 1193-1203. [CrossRef] open in new tab
  38. Winiarski, J.; Cieślikowska, B.; Tylus, W.; Kunicki, P.; Szczygieł, B. Corrosion of nanocrystalline nickel coatings electrodeposited from choline chloride:ethylene glycol deep eutectic solvent exposed in 0.05 M NaCl solution. Appl. Surf. Sci. 2019, 470, 331-339. [CrossRef] open in new tab
  39. Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324-332. [CrossRef] open in new tab
  40. Tang, Y.; Pattengale, B.; Ludwig, J.; Atifi, A.; Zinovev, A.V.; Dong, B.; Kong, Q.; Zuo, X.; Zhang, X.; Huang, J. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Sci. Rep. 2015, 5, 18505. [CrossRef] open in new tab
  41. Mansour, A.N. Characterization of NiO by XPS. Surf. Sci. Spectra 1994, 3, 231-238. [CrossRef] open in new tab
  42. Espinos, J.P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J.P.; González-Elipe, A.R.; González-Elipe, A.R. Interface Effects for Cu, CuO, and Cu 2 O Deposited on SiO 2 and ZrO 2 . XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. J. Phys. Chem. B 2002, 106, 6921-6929. [CrossRef] open in new tab
  43. Shaikh, J.; Pawar, R.C.; Devan, R.; Ma, Y.; Salvi, P.; Kolekar, S.; Patil, P. Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochimica Acta 2011, 56, 2127-2134. [CrossRef] open in new tab
  44. Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu 2 O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811-820. [CrossRef] open in new tab
  45. Morales, J.; Espinos, J.P.; Caballero, A.; Gonzalez-Elipe, A.R.; Mejías, J.A.; González-Elipe, A.R. XPS Study of Interface and Ligand Effects in Supported Cu2O and CuO Nanometric Particles. J. Phys. Chem. B 2005, 109, 7758-7765. [CrossRef] open in new tab
  46. González-Elipe, A.R.; Holgado, J.P.; Alvarez, R.; Munuera, G. Use of factor analysis and XPS to study defective nickel oxide. J. Phys. Chem. 1992, 96, 3080-3086. [CrossRef] open in new tab
  47. Holgado, J.P.; Alvarez, R.; Munuera, G. Study of CeO2 XPS spectra by factor analysis: Reduction of CeO 2 . Appl. Surf. Sci. 2000, 161, 301-315. [CrossRef] open in new tab
  48. Al-Doghachi, F.A.J.; Rashid, U.; Taufiq-Yap, Y.H. Investigation of Ce(iii) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming of methane. RSC Adv. 2016, 6, 10372-10384. [CrossRef] open in new tab
  49. Beche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 2008, 40, 264-267. [CrossRef] open in new tab
  50. Li, Z.; Gao, L.; Zheng, S. SEM, XPS, and FTIR studies of MoO 3 dispersion on mesoporous silicate MCM-41 by calcination. Mater. Lett. 2003, 57, 4605-4610. [CrossRef] open in new tab
  51. Reddy, B.M.; Chowdhury, B.; Reddy, E.P.; Fernández, A. An XPS study of dispersion and chemical state of MoO3 on Al2O3-TiO2 binary oxide support. Appl. Catal. A: Gen. 2001, 213, 279-288. [CrossRef] open in new tab
  52. Lee, Y.J.; Nichols, W.T.; Kim, D.-G.; Kim, Y.D. Chemical vapour transport synthesis and optical characterization of MoO3thin films. J. Phys. D: Appl. Phys. 2009, 42, 115419. [CrossRef] open in new tab
  53. Li, H.; Ye, H.; Xu, Z.; Wang, C.; Yin, J.; Zhu, H. Freestanding MoO 2 /Mo 2 C imbedded carbon fibers for Li-ion batteries. Phys. Chem. Chem. Phys. 2017, 19, 2908-2914. [CrossRef] [PubMed] open in new tab
  54. Kim, H.; Cook, J.; Tolbert, S.H.; Dunn, B. The Development of Pseudocapacitive Properties in Nanosized-MoO2. J. Electrochem. Soc. 2015, 162, A5083-A5090. [CrossRef] open in new tab
  55. Marin-Flores, O.; Scudiero, L.; Ha, S. X-ray diffraction and photoelectron spectroscopy studies of MoO 2 as catalyst for the partial oxidation of isooctane. Surf. Sci. 2009, 603, 2327-2332. [CrossRef] open in new tab
  56. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 98 times

Recommended for you

Meta Tags