On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity - Publication - Bridge of Knowledge

Search

On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity

Abstract

Magnetosonic periodic perturbations in a uniform and infinite plasma model are considered. Damping due to compressional viscosity, electrical resistivity, and thermal conduction are taken into account, as well as some heating–cooling function, which may destroy the isentropicity of wave perturbations. The wave vector forms arbitrary angle h with the equilibrium straight magnetic field, and all perturbations are functions of time and longitudinal coordinate. Variable h and plasma- b bring essential difficulties in the description of magnetosonic perturbations, which may be fast or slow. Wave damping of each kind depends differently on h and plasma- b . Longitudinal velocity, which is periodic at any distance from an exciter, is analytically constructed. It approximates the exact solution with satisfactory accuracy.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cite as

Full text

download paper
downloaded 13 times
Publication version
Accepted or Published Version
License
Copyright (2020 AIP Publishing)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICS OF PLASMAS no. 27, pages 1 - 11,
ISSN: 1070-664X
Language:
English
Publication year:
2020
Bibliographic description:
Perelomova A.: On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity// PHYSICS OF PLASMAS -Vol. 27,iss. 3 (2020), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5142608
Bibliography: test
  1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, New York, 1987). open in new tab
  2. O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Plenum, New York, 1977). open in new tab
  3. A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (McGraw-Hill, New York, 1981). open in new tab
  4. M. Hamilton and D. Blackstock, Nonlinear Acoustics (Academic Press, New York, 1998).
  5. R. Rosner, W. H. Tucker, and G. S. Vaiana, "Dynamics of the quiescent solar corona," Astrophys. J. 220, 643-665 (1978). open in new tab
  6. I. Ballai, "Nonlinear waves in solar plasmas-A review," J. Phys.: Conf. Ser. 44, 20-29 (2006). open in new tab
  7. A. I. Osipov and A. V. Uvarov, "Kinetic and gasdynamic processes in nonequi- librium molecular physics," Sov. Phys. Usp. 35(11), 903-923 (1992). open in new tab
  8. N. E. Molevich, "Sound amplification in inhomogeneous flows of nonequilib- rium gas," Acoust. Phys. 47(1), 102-105 (2001). open in new tab
  9. N. E. Molevich, "Sound velocity dispersion and second viscosity in media with nonequilibrium chemical reactions," Acoust. Phys. 49(2), 189-232 (2003). open in new tab
  10. S. Leble and A. Perelomova, The Dynamical Projectors Method: Hydro and Electrodynamics (CRC Press, 2018). open in new tab
  11. L. P. Singh, R. Singh, and S. D. Ram, "Evolution and decay of acceleration waves in perfectly conducting inviscid radiative magnetogasdynamics," Astrophys. Space Sci. 342, 371-376 (2012). open in new tab
  12. S. N. Ojha and A. Singh, "Growth and decay of sonic waves in thermally radia- tive magnetogasdynamics," Astrophys. Space Sci. 179, 45-54 (1991). open in new tab
  13. N. Geffen, "Magnetogasdynamic flows with shock waves," Phys. Fluids 6(4), 566-571 (1963). open in new tab
  14. V. D. Sharma, L. P. Singh, and R. Ram, "Propagation of discontinuities in mag- netogasdynamics," Phys. Fluids 24(7), 1386-1387 (1981). open in new tab
  15. V. G. Makaryan and N. E. Molevich, "Stationary shock waves in nonequilib- rium media," Plasma Sources Sci. Technol. 16, 124-131 (2007). open in new tab
  16. R. Chin, E. Verwichte, G. Rowlands, and V. M. Nakariakov, "Self-organization of magnetoacoustic waves in a thermally unstable environment," Phys. Plasmas 17(32), 032107 (2010). open in new tab
  17. A. Perelomova, "Propagation of initially saw-tooth periodic and impulsive sig- nals in a quasi-isentropic magnetic gas," Phys. Plasmas 26, 052304 (2019). open in new tab
  18. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw Hill, New York, 1973). open in new tab
  19. J. D. Callen, Fundamentals of Plasma Physics, Lecture Notes (University of Wisconsin, Madison, 2003). open in new tab
  20. V. M. Nakariakov, C. A. Mendoza-Brice no, and M. H. Ib a nez, "Magnetosonic waves of small amplitude in optically thin quasi-isentropic plasmas," Astrophys. J. 528, 767-775 (2000). open in new tab
  21. S. I. Braginskii, "Transport processes in a plasma," in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, pp. 205-311.
  22. M. S. Ruderman, R. Oliver, R. Erd elyi, J. L. Ballester, and M. Goossens, "Slow surface wave damping in plasmas with anisotropic viscosity and thermal con- ductivity," Astron. Astrophys. 354(1), 261-276 (2000). open in new tab
  23. L. Spitzer, Jr., Physics of Fully Ionized Gases (Wiley Interscience, New York, 1962).
  24. S. Kumar, V. M. Nakariakov, and Y.-J. Moon, "Effect of a radiation cooling and heating function on standing longitudinal oscillations in coronal loops," Astrophys. J. 824, 8 (2016). open in new tab
  25. D. I. Zavershinskii, D. Y. Kolotkov, V. M. Nakariakov, N. E. Molevich, and D. S. Ryashchikov, "Formation of quasi-periodic slow magnetosonic wave trains by the heating/cooling misbalance," Phys. Plasmas 26, 082113 (2019). open in new tab
  26. G. B. Field, "Thermal instability," Astrophys. J. 142, 531-567 (1965). open in new tab
  27. E. N. Parker, "Instability of thermal fields," Astrophys. J. 117, 431-436 (1953). open in new tab
  28. A. Perelomova, "Magnetosonic heating in nonisentropic plasma caused by differ- ent kinds of heating-cooling function," Adv. Math. Phys. 2018, 8253210. open in new tab
  29. J. F. Vesecky, S. K. Antiochos, and J. H. Underwood, "Numerical modeling of quasi-static coronal loops. I-Uniform energy input," Astrophys. J. 233(3), 987-997 (1979). open in new tab
  30. A. De Ploey, M. Goossens, and R. A. M. Van der Linden, "Multifaceted asym- metric radiation from the edge (MARFE): A general magnetohydrodynamic study in a one-dimensional tokamak model," Phys. Plasmas 1(8), 2623-2629 (1994). open in new tab
  31. W. M. Stacey, "Thermal instabilities in the edge transport barrier," Phys. Plasmas 6(6), 2452-2461 (1999). open in new tab
  32. L. Ofman and T. Wang, "Hot coronal loop oscillations observed by SUMER: Slow magnetosonic wave damping by thermal conduction," Astrophys. J. 580, L85-L88 (2002). open in new tab
  33. M. S. Ruderman, E. Verrwichte, R. Erdelyi, and M. Goossens, "Dissipative instability of the MHD tangential discontinuity in magnetized plasmas with an isotropic viscosity and thermal conductivity," J. Plasma Phys. 56(2), 285-306 (1996). open in new tab
  34. N. Kumar, P. Kumar, and S. Singh, "Coronal heating by MHD waves," Astron. Astrophys. A 453, 1067-1078 (2006). open in new tab
  35. V. M. Nakariakov and B. Roberts, "Solitary autowaves in magnetic flux tubes," Phys. Lett. A 254(6), 314-318 (1999). open in new tab
Verified by:
Gdańsk University of Technology

seen 76 times

Recommended for you

Meta Tags