Abstract
The paper presents results of numerical simulations of size effect phenomenon in concrete specimens. The behaviour of in-plane geometrically similar notched and unnotched beams under three-point bending is investigated. In total 18 beams are analysed. Concrete beams of four different sizes and five different notch to depth ratios are simulated. Two methods are applied to describe cracks. First, an elasto-plastic constitutive law with a Rankine criterion and an associated flow rule is defined. In order to obtain mesh independent results, an integral non-local theory is used as a regularisation method in the softening regime. Alternatively, cracks are described in a discrete way within Extended Finite Element Method (XFEM). Two softening relationships in the softening regime are studied: a bilinear and an exponential curve. Obtained numerical results are compared with experimental outcomes recently reported in literature. Calculated maximum forces (nominal strengths) are quantitatively verified against experimental values, but the force – displacement curves are also examined. It is shown that both approaches give results consistent with experiments. Moreover, both softening curves with different initial fracture energies can produce similar force-displacement curves.
Citations
-
7
CrossRef
-
0
Web of Science
-
8
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/pomr-2019-0031
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Polish Maritime Research
no. 26,
pages 115 - 125,
ISSN: 1233-2585 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Marzec I., Bobiński J.: On some problems in determining tensile parameters of concrete model from size effect tests// Polish Maritime Research -Vol. 26,iss. 2 (102) (2019), s.115-125
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/pomr-2019-0031
- Verified by:
- Gdańsk University of Technology
seen 130 times