Parametric versus nonparametric modelling of dynamic susceptibility contrast enhanced MRI based data
Abstract
Dynamic tracking of a bolus of a paramagnetic agent (dynamic susceptibility contract - DSC) in MRI (magnetic resonance imaging) measurements is successfully used for assessment of the tissue perfusion and the other features and functions of the brain (i.e. cerebral blood flow - CBF, cerebral blood volume - CBV, mean transit time - MTT). The parametric and nonparametric approaches to the identification of MRI models are presented and compared. The nonparametric modelling adopts Gamma variate functions. The parametric three-compartmental catenary model, based on general kinetic model, is also proposed. The parameters of the models are estimated on the bases of experimental data. For improving the estimates accuracy of parametric model the Kalman filtering, smoothing the measurements, was adopted. The parametric modelling gives better fit, better parameters estimates than the nonparametric one and allows an insight into the system functioning.
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Language:
- English
- Publication year:
- 2005
- Bibliographic description:
- Kalicka R., Pietrenko-Dąbrowska A.: Parametric versus nonparametric modelling of dynamic susceptibility contrast enhanced MRI based data // / : , 2005,
- Verified by:
- Gdańsk University of Technology
seen 135 times
Recommended for you
Komputerowe wspomaganie diagnostyki układu oddechowego człowieka
- R. Kalicka,
- W. Słomiński,
- K. Kuziemski
Brain perfusion imaging with the use of parametric modelling basing on DSC-MRI data
- R. Kalicka,
- A. Pietrenko-Dąbrowska,
- R. Nowicki
- + 1 authors