Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells - Publication - Bridge of Knowledge

Search

Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells

Abstract

The H2S-tolerance of SrFe0.75Mo0.25O3-δ (SFM) electrodes has been investigated in symmetric proton ceramic fuel cells (PCFC) with BaZr0.8Ce0.1Y0.1O3-δ (BZCY81) electrolyte. The ionic conductivity of the electrolyte under wet reducing conditions was found to be insignificantly affected in the presence of up to 5000 ppm H2S. The fuel cell exhibited an OCV of about 0.9 V at 700 °C, which dropped to about 0.6 V and 0.4 V upon exposure to 500 and 5000 ppm H2S, respectively, on the fuel side. Post characterization of the fuel cell revealed significant degradation of the anode in terms of microstructure and chemical composition due to formation of sulfides such as SrS, MoS2 and Fe3S4. Nevertheless, the fuel cell was still functional due to the sufficient electronic conductivity of some of these sulfides.

Citations

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 132 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY no. 38, pages 163 - 171,
ISSN: 0955-2219
Language:
English
Publication year:
2017
Bibliographic description:
Wachowski S., Li Z., Polfus J., Norby T.: Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells// JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. -Vol. 38, nr. 1 (2017), s.163-171
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jeurceramsoc.2017.08.020
Bibliography: test
  1. K.D. Kreuer, Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, 2012. doi:10.1016/B978-044452745-5.00290-2. open in new tab
  2. M. Ball, M. Wietschel, The future of hydrogen -opportunities and challenges☆, Int. J. Hydrogen Energy. 34 (2009) 615-627. doi:10.1016/j.ijhydene.2008.11.014. open in new tab
  3. J. Molenda, J. Kupecki, R. Baron, M. Blesznowski, G. Brus, T. Brylewski, M. Bucko, 18 open in new tab
  4. J. Chmielowiec, K. Cwieka, M. Gazda, A. Gil, P. Jasinski, Z. Jaworski, J. Karczewski, M. Kawalec, R. Kluczowski, M. Krauz, F. Krok, B. Lukasik, M. Malys, A. Mazur, A. Mielewczyk-Gryn, J. Milewski, S. Molin, G. Mordarski, M. Mosialek, K. Motylinski, E.N. Naumovich, P. Nowak, G. Pasciak, P. Pianko-Oprych, D. Pomykalska, M. Rekas, A. Sciazko, K. Swierczek, J. Szmyd, S. Wachowski, T. Wejrzanowski, W. Wrobel, K.
  5. Zagorski, W. Zajac, A. Zurawska, Status report on high temperature fuel cells in Poland -Recent advances and achievements, Int. J. Hydrogen Energy. (2017). doi:10.1016/j.ijhydene.2016.12.087. open in new tab
  6. Y. Shiratori, T. Ijichi, T. Oshima, K. Sasaki, Internal reforming SOFC running on biogas, Int. J. Hydrogen Energy. 35 (2010) 7905-7912. doi:10.1016/j.ijhydene.2010.05.064. open in new tab
  7. S. Rasi, A. Veijanen, J. Rintala, Trace compounds of biogas from different biogas production plants, Energy. 32 (2007) 1375-1380. doi:10.1016/j.energy.2006.10.018. open in new tab
  8. N. Abatzoglou, S. Boivin, A review of biogas purification processes, Biofuels, Bioprod. Biorefining. 3 (2009) 42-71. doi:10.1002/bbb.117. open in new tab
  9. A.M. Montebello, M. Fernández, F. Almenglo, M. Ramírez, D. Cantero, M. Baeza, D. Gabriel, Simultaneous methylmercaptan and hydrogen sulfide removal in the desulfurization of biogas in aerobic and anoxic biotrickling filters, Chem. Eng. J. 200- 202 (2012) 237-246. doi:10.1016/j.cej.2012.06.043. open in new tab
  10. R.A. Pandey, S. Malhotra, Desulfurization of Gaseous Fuels with Recovery of Elemental Sulfur: An Overview, Crit. Rev. Environ. Sci. Technol. 29 (1999) 229-268. doi:10.1080/10643389991259236. open in new tab
  11. WHO World Health Organization, WHO Regional Publications, European Series; No. 91: Air quality guidelines for Europe, 2000. doi:10.1007/BF02986808. open in new tab
  12. M. Arnold, Reduction and monitoring of biogas trace compounds, Espoo, 2009. http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2496.pdf. open in new tab
  13. J.P. Trembly, A.I. Marquez, T.R. Ohrn, D.J. Bayless, Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests, J. Power Sources. 158 (2006) 263-273. doi:10.1016/j.jpowsour.2005.09.055. open in new tab
  14. S. Zha, Z. Cheng, M. Liu, Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells, J. Electrochem. Soc. 154 (2007) B201. doi:10.1149/1.2404779. 19 open in new tab
  15. Y. Matsuzaki, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration, Solid State Ionics. 132 (2000) 261-269. doi:10.1016/S0167-2738(00)00653-6. open in new tab
  16. Z. Cheng, M. Liu, Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy, Solid State Ionics. 178 (2007) 925-935. doi:10.1016/j.ssi.2007.04.004. open in new tab
  17. S. Hernández, L. Solarino, G. Orsello, N. Russo, D. Fino, G. Saracco, V. Specchia, Desulfurization processes for fuel cells systems, Int. J. Hydrogen Energy. 33 (2008) 3209-3214. doi:10.1016/j.ijhydene.2008.01.047. open in new tab
  18. D. Mescia, S.P. Hernández, A. Conoci, N. Russo, MSW landfill biogas desulfurization, Int. J. Hydrogen Energy. 36 (2011) 7884-7890. doi:10.1016/j.ijhydene.2011.01.057. open in new tab
  19. L. Barelli, G. Bidini, F. Gallorini, S. Servili, Hydrogen production through sorption- enhanced steam methane reforming and membrane technology: A review, Energy. 33 (2008) 554-570. doi:10.1016/j.energy.2007.10.018. open in new tab
  20. M. Komiyama, T. Misonou, S. Takeuchi, K. Umetsu, J. Takahashi, Biogas as a reproducible energy source: Its steam reforming for electricity generation and for farm machine fuel, Int. Congr. Ser. 1293 (2006) 234-237. doi:10.1016/j.ics.2006.03.008. open in new tab
  21. J. Van herle, F. Maréchal, S. Leuenberger, Y. Membrez, O. Bucheli, D. Favrat, Process flow model of solid oxide fuel cell system supplied with sewage biogas, J. Power Sources. 131 (2004) 127-141. doi:10.1016/j.jpowsour.2004.01.013. open in new tab
  22. S. Wang, G.Q. Lu, G.J. Millar, Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art, Energy & Fuels. 10 (1996) 896-904. doi:10.1021/ef950227t. open in new tab
  23. J. Xuan, M.K.H. Leung, D.Y.C. Leung, M. Ni, A review of biomass-derived fuel processors for fuel cell systems, Renew. Sustain. Energy Rev. 13 (2009) 1301-1313. doi:10.1016/j.rser.2008.09.027. open in new tab
  24. J. Van herle, Y. Membrez, O. Bucheli, Biogas as a fuel source for SOFC co-generators, J. Power Sources. 127 (2004) 300-312. doi:10.1016/j.jpowsour.2003.09.027. open in new tab
  25. W.F. Giauque, E.W. Hornung, J.E. Kunzler, T.R. Rubin, The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K., J. Am. 20 open in new tab
  26. Chem. Soc. 82 (1960) 62-70. doi:10.1021/ja01486a014. open in new tab
  27. T.R. Rubin, W.F. Giauque, The Heat Capacities and Entropies of Sulfuric Acid and Its Mono-and Dihydrates from 15 to 300°K., J. Am. Chem. Soc. 74 (1952) 800-804. doi:10.1021/ja01123a063. open in new tab
  28. G.E. Walrafen, D.M. Dodd, Infra-red absorption spectra of concentrated aqueous solutions of sulphuric acid. Part 2.-H 2 SO 4 and HSO-4 vibrational fundamentals and estimates of (F°298·15-H°0)/T and S°298·15 for H 2 SO 4 gas, Trans. Faraday Soc. 57 (1961) 1286-1296. doi:10.1039/TF9615701286. open in new tab
  29. J.R. Eckman, F.D. Rossini, The heat of formation of sulphur dioxide, Bur. Stand. J. Res. 3 (1929) 597-618. open in new tab
  30. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. OHayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science (80-. ). 349 (2015) 1321-1326. doi:10.1126/science.aab3987. open in new tab
  31. J.M. Polfus, T. Norby, R. Bredesen, Protons in Oxysulfides, Oxysulfates, and Sulfides: A First-Principles Study of La 2 O 2 S, La 2 O 2 SO 4 , SrZrS 3 , and BaZrS 3, J. Phys. Chem. C. 119 (2015) 23875-23882. doi:10.1021/acs.jpcc.5b08278. open in new tab
  32. A.A. Markov, O.A. Savinskaya, M.V. Patrakeev, A.P. Nemudry, I.A. Leonidov, Y.T. open in new tab
  33. Pavlyukhin, A.V. Ishchenko, V.L. Kozhevnikov, Structural features, nonstoichiometry and high-temperature transport in SrFe1−xMoxO3−δ, J. Solid State Chem. 182 (2009) 799-806. doi:10.1016/j.jssc.2008.12.026. open in new tab
  34. A.A. Markov, I.A. Leonidov, M.V. Patrakeev, V.L. Kozhevnikov, O.A. Savinskaya, U.V. Ancharova, A.P. Nemudry, Structural stability and electrical transport in SrFe1−xMoxO3−δ, Solid State Ionics. 179 (2008) 1050-1053. doi:10.1016/j.ssi.2008.01.026. open in new tab
  35. A.J. Fernández-Ropero, J.M. Porras-Vázquez, A. Cabeza, P.R. Slater, D. Marrero- López, E.R. Losilla, High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs, J. Power Sources. 249 (2014) 405-413. doi:10.1016/j.jpowsour.2013.10.118. open in new tab
  36. O.V. Merkulov, E.N. Naumovich, M.V. Patrakeev, A.A. Markov, H.J.M. open in new tab
  37. Bouwmeester, I.A. Leonidov, V.L. Kozhevnikov, Oxygen nonstoichiometry and defect chemistry of perovskite-structured SrFe1−xMoxO3−δ solid solutions, Solid State 21
  38. Ionics. 292 (2016) 116-121. doi:10.1016/j.ssi.2016.05.009. open in new tab
  39. K. Zheng, K. Świerczek, N.M. Carcases, T. Norby, Coking Study in Anode Materials for SOFCs: Physicochemical Properties and Behavior of Mo-Containing Perovskites in CO and CH4 Fuels, ECS Trans. 64 (2014) 103-116. doi:10.1149/06402.0103ecst. open in new tab
  40. M. Patrakeev, I. Leonidov, V. Kozhevnikov, V. Kharton, Ion-electron transport in strontium ferrites: relationships with structural features and stability, Solid State Sci. 6 (2004) 907-913. doi:10.1016/j.solidstatesciences.2004.05.002. open in new tab
  41. K. Zheng, K. Świerczek, J.M. Polfus, M.F. Sunding, M. Pishahang, T. Norby, Carbon Deposition and Sulfur Poisoning in SrFe0.75Mo0.25O3-and SrFe0.5Mn0.25Mo0.25O3-Electrode Materials for Symmetrical SOFCs, J. Electrochem. Soc. 162 (2015) F1078-F1087. doi:10.1149/2.0981509jes. open in new tab
  42. Coorstek Inc., Manufacturer's datasheet: BZCY81 Ni-leeched pellet, 2015.
  43. J.M. Serra, W.A. Meulenberg, Thin-Film Proton BaZr 0.85 Y 0.15 O 3 Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative, J. Am. Ceram. Soc. 90 (2007) 2082-2089. doi:10.1111/j.1551-2916.2007.01677.x. open in new tab
  44. Y. Zhao, D. Weidner, Thermal expansion of SrZrO3 and BaZrO3 perovskites, Phys. Chem. Miner. 18 (1991). doi:10.1007/BF00200187. open in new tab
  45. S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. open in new tab
  46. Kobayashi, K. Kurosaki, Thermophysical properties of BaZrO3 and BaCeO3, J. Alloys Compd. 359 (2003) 109-113. doi:10.1016/S0925-8388(03)00214-7. open in new tab
  47. B. Boukamp, A package for impedance/admittance data analysis, Solid State Ionics. 18-19 (1986) 136-140. doi:10.1016/0167-2738(86)90100-1. open in new tab
  48. A. Magrasó, C. Kjølseth, R. Haugsrud, T. Norby, Influence of Pr substitution on defects, transport, and grain boundary properties of acceptor-doped BaZrO3, Int. J. Hydrogen Energy. 37 (2012) 7962-7969. doi:10.1016/j.ijhydene.2011.10.067. open in new tab
  49. R. Sažinas, C. Bernuy-López, M.-A. Einarsrud, T. Grande, Effect of CO 2 Exposure on the Chemical Stability and Mechanical Properties of BaZrO 3 -Ceramics, J. Am. Ceram. Soc. 99 (2016) 3685-3695. doi:10.1111/jace.14395. open in new tab
  50. A. Ubaldini, V. Buscaglia, C. Uliana, G. Costa, M. Ferretti, Kinetics and Mechanism of Formation of Barium Zirconate from Barium Carbonate and Zirconia Powders, J. Am. 22 open in new tab
  51. Ceram. Soc. 86 (2003) 19-25. doi:10.1111/j.1151-2916.2003.tb03271.x. open in new tab
  52. Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate, Chem. Mater. 21 (2009) 2755-2762. doi:10.1021/cm900208w. open in new tab
  53. S. Ricote, N. Bonanos, H.J. Wang, R. Haugsrud, Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1 -ξ)Ni ξO(3 -δ), Solid State Ionics. 185 (2011) 11-17. doi:10.1016/j.ssi.2010.12.012. open in new tab
  54. M. Marrony, P. Berger, F. Mauvy, J.-C. Grenier, N. Sata, A. Magrasó, R. Haugsrud, P.R. Slater, G. Taillades, J. Roziere, J. Dailly, N. Fukatsu, P. Briois, H. Matsumoto, M. Stoukides, Proton-Conducting Ceramics. From Fundamentals to Applied Research, Pan Stanford Publishing, Singapore, 2016.
  55. M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application, J. Power Sources. 168 (2007) 289-298. doi:10.1016/j.jpowsour.2007.03.026. open in new tab
  56. S. Wang, M. Liu, J. Winnick, Stabilities and electrical conductivities of electrode materials for use in H2S-containing gases, J. Solid State Electrochem. 5 (2001) 188- 195. doi:10.1007/s100080000142. open in new tab
  57. L. Aguilar, S. Zha, Z. Cheng, J. Winnick, M. Liu, A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels, J. Power Sources. 135 (2004) 17- 24. doi:10.1016/j.jpowsour.2004.03.061. open in new tab
  58. S.M. Babiniec, S. Ricote, N.P. Sullivan, Characterization of ionic transport through BaCe0.2 Zr0.7Y0.1O3−δ membranes in galvanic and electrolytic operation, Int. J. Hydrogen Energy. 40 (2015) 9278-9286. doi:10.1016/j.ijhydene.2015.05.162. open in new tab
  59. W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane, J. Power Sources. 118 (2003) 150-156. doi:10.1016/S0378-7753(03)00072-7. open in new tab
Verified by:
Gdańsk University of Technology

seen 129 times

Recommended for you

Meta Tags