PHASE OBJECT OBSERVATION SYSTEM BASED ON DIFFRACTION PHASE MICROSCOPY - Publication - Bridge of Knowledge

Search

PHASE OBJECT OBSERVATION SYSTEM BASED ON DIFFRACTION PHASE MICROSCOPY

Abstract

In the paper authors present a special measurement system for observing phase objects. The diffraction phas microscopy makes it possible to measure the dimensions of a tested object with a nanometre resolution. To meet this requirement, it is proposed to apply a spatial transform. The proposed setup can be based either on a two lenses system (called 4 f ) or a Wollaston prism. Both solutions with all construction aspects are described in the paper. To make a full analysis of the object shape the authors developed an accurate image processing algorithm, also presented in the paper.

Cite as

Full text

download paper
downloaded 102 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 25, pages 213 - 221,
ISSN: 0860-8229
Language:
English
Publication year:
2018
Bibliographic description:
Babicz-Kiewlicz S., Stawarz-Graczyk B., Wierzba P.: PHASE OBJECT OBSERVATION SYSTEM BASED ON DIFFRACTION PHASE MICROSCOPY// Metrology and Measurement Systems. -Vol. 25, nr. 1 (2018), s.213-221
Bibliography: test
  1. Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent ob- jects. Physica, 9(7), 686-698. open in new tab
  2. Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent ob- jects part II. Physica, 9(10), 974-980. open in new tab
  3. Burch, C.R., Stock, J.P.P. (1942). Phase-Contrast Microscopy. J. of Sci. Instr., 19(5), 71-75. open in new tab
  4. Hariharan, P. (2010). Basics of interferometry. Academic Press. open in new tab
  5. Popescu, G., Ikeda, T., Dasari, R.R., Feld, M.S. (2006). Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett., 31(6), 775-777. open in new tab
  6. Park, Y., Popescu, G., Badizadegan, K., Dasari, R.R., Feld, M.S. (2006). Diffraction phase and fluo- rescence microscopy. Opt. Exp., 14(18), 8263-8268. open in new tab
  7. Bhaduri, B., Edwards, C., Pham, H., Zhou, R., Nguyen, T.H., Goddard, L.L., Popescu, G. (2014). Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. in Opt. and Phot., 6(1), 57-119. open in new tab
  8. Bhaduri, B., Pham, H., Mir, M., Popescu, G. (2017). Diffraction phase microscopy with white light. Opt. Lett., 37(6), 1094-1096. open in new tab
  9. Pluta, M. (1989). Advanced light microscopy. Vol. 2: Specialized Methods. PWN, Elsevier.
  10. Babicz-Kiewlicz, S., Stawarz-Graczyk, B., Wierzba, P., Mazikowski, A. (2015). Diffraction Phase Microscopy for observation on red blood cells fluctuation. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 46, 13-16.
  11. Majeed, H., Sridharan, Sh., Mir, M., Ma, L., Min, E., Jung, W., Popescu, G. (2017). Quantitative phase imaging for medical diagnosis. J. of Biophot., 10(2), 177-205. open in new tab
  12. Popescu, G., Park, Y., Choi, W., Dasari, R.R., Feld, M.S., Badizadegan, K. (2008). Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases, 41(1), 10-16. open in new tab
  13. Pham, H.V., Bhaduri, B., Tangella, K., Best-Popescu, C., Popescu, G. (2013). Real Time Blood Testing Using Quantitative Phase Imaging. PloS one, 8(2), e55676. open in new tab
  14. Otsu, N. (1979). A thereshold selection method from gray-level histograms. IEEEE Trans. on Systems, Man and Cybernetics, 9(1), 62-66. open in new tab
  15. Kwiatkowski, A., Czerwicka, M., Smulko, J., Stepnowski, P. (2014). Detection of denatonium ben- zoate (Bitrex) remnants in noncommercial alcoholic beverages by Raman spectroscopy. Journal of Forensic Sciences, 59(5), 1358-1363. open in new tab
  16. Gnyba, M., Smulko, J., Kwiatkowski, A., Wierzba, P. (2011). Portable Raman spectrometer-design rules and applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(3), 325- 329. open in new tab
  17. Smulko, J., Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. open in new tab
  18. Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mix- ture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341-350. open in new tab
Verified by:
Gdańsk University of Technology

seen 90 times

Recommended for you

Meta Tags