Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction - Publication - Bridge of Knowledge

Search

Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction

Abstract

Ag2O/TiO2 heterojunctions were prepared by a simple method, i.e., the grinding of argentous oxide with six different titania photocatalysts. The physicochemical properties of the obtained photocatalysts were characterized by diffuse-reflectance spectroscopy (DRS), X-ray powder diffraction (XRD) and scanning transmission electron microscopy (STEM) with an energy dispersive X-ray spectroscopy (EDS). The photocatalytic activity was investigated for the oxidative decomposition of acetic acid and methanol dehydrogenation under UV/vis irradiation and for the oxidative decomposition of phenol and 2-propanol under vis irradiation. Antimicrobial properties were tested for bacteria (Escherichia coli) and fungi (Candida albicans and Penicillium chrysogenum) under UV and vis irradiation and in the dark. Enhanced activity was observed under UV/vis (with synergism for fine anatase-containing samples) and vis irradiation for almost all samples. This suggests a hindered recombination of charge carriers by p-n heterojunction or Z-scheme mechanisms under UV irradiation and photo-excited electron transfer from Ag2O to TiO2 under vis irradiation. Improved antimicrobial properties were achieved, especially under vis irradiation, probably due to electrostatic attractions between the negative surface of microorganisms and the positively charged Ag2O.

Citations

  • 3 2

    CrossRef

  • 0

    Web of Science

  • 3 4

    Scopus

Authors (8)

Cite as

Full text

download paper
downloaded 98 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
ChemEngineering no. 3, pages 1 - 18,
ISSN:
Language:
English
Publication year:
2019
Bibliographic description:
Endo-Kimura, M., Janczarek M., Bielan Z., Zhang D., Wang K., Markowska-Szczupak A., Kowalska E.. Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction. ChemEngineering, 2019, Vol. 3, nr. 1, s.1-18
DOI:
Digital Object Identifier (open in new tab) 10.3390/chemengineering3010003
Bibliography: test
  1. Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96. [CrossRef] open in new tab
  2. Abe, R.; Higashi, M.; Domen, K. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO 3 in the presence of an iodate-iodide shuttle redox mediator. ChemSusChem 2011, 4, 228-237. [CrossRef] [PubMed] open in new tab
  3. Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1-21. [CrossRef] open in new tab
  4. Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9487-9558. [CrossRef] [PubMed] open in new tab
  5. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38. [CrossRef] [PubMed] open in new tab
  6. Ohtani, B.; Mahaney, O.O.P.; Amano, F.; Murakami, N.; Abe, R. What are titania photocatalysts? An exploratory correlation of photocatalytic activity with structural and physical properties. J. Adv. Oxid. Technol. 2010, 13, 247-261. [CrossRef] open in new tab
  7. D'Oliveira, J.-C.; Al-Sayyed, G.; Pichat, P. Photodegradation of 2-and 3-chlorophenol in TiO 2 aqueous suspensions. Environ. Sci. Technol. 1990, 24, 990-996. [CrossRef] open in new tab
  8. Kisch, H. Semiconductor photocatalysis-Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812-847. [CrossRef] open in new tab
  9. Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O'Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331-349. [CrossRef] open in new tab
  10. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO 2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986. [CrossRef] open in new tab
  11. Byrne, J.A.; Dunlop, P.S.M.; Hamilton, J.W.J.; Fernandez-Ibanez, P.A.; Polo-Lopez, I.; Sharma, P.K.; Vennard, A.S.M. A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 2015, 20, 5574-5615. [CrossRef] [PubMed] open in new tab
  12. Kowalska, E.; Wei, Z.; Janczarek, M. Band-gap engineering of photocatalysts: Surface modification versus doping. In Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms and Applications; open in new tab
  13. Ghosh, S., Ed.; Wiley: Weinheim, Germany, 2018; pp. 449-484.
  14. Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244. [CrossRef] [PubMed] open in new tab
  15. Tjeng, L.H.; Meinders, M.B.J.; Elp, J.; Ghijsen, J.; Sawatzky, G.A.; Johnson, R.L. Electronic structure of Ag 2 O. Phys. Rev. B 1990, 41, 3190-3199. [CrossRef] open in new tab
  16. Wang, X.; Li, S.; Yu, H.; Yu, J.; Liu, S. Ag 2 O as a new visible-light photocatalyst: Self-stability and high photocatalytic activity. Chem. Eur. J. 2011, 17, 7777-7780. [CrossRef] [PubMed] open in new tab
  17. Wang, G.; Ma, X.; Huang, B.; Cheng, H.; Wang, Z.; Zhan, J.; Qin, X.; Zhang, X.; Dai, Y. Controlled synthesis of Ag 2 O microcrystals with facet-dependent photocatalytic activities. J. Mater. Chem. 2012, 22, 21189-21194. [CrossRef] open in new tab
  18. Chen, Y.J.; Chiang, Y.W.; Huang, M.H. Synthesis of diverse Ag 2 O crystals and their facet-dependent photocatalytic activity examination. ACS Appl. Mater. Interfaces 2016, 8, 19672-19679. [CrossRef] [PubMed] open in new tab
  19. Jiang, W.; Wang, X.; Wu, Z.; Yue, X.; Yuan, S.; Lu, H.; Liang, B. Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism. Ind. Eng. Chem. Res. 2014, 54, 832-841. [CrossRef] open in new tab
  20. Wang, X.; Wu, H.F.; Huang, R.B.; Xie, Z.X.; Zheng, L.S. Shape-dependent antibacterial activities of Ag 2 O polyhedral particles. Langmuir 2010, 26, 2774-2778. [CrossRef] [PubMed] open in new tab
  21. Lyu, L.M.; Huang, M.H. Investigation of relative stability of different facets of Ag 2 O nanocrystals through face-selective etching. J. Phys. Chem. C 2011, 115, 17768-17773. [CrossRef] open in new tab
  22. Wodka, D.; Bielanska, E.; Socha, R.P.; Elzbieciak-Wodka, M.; Gurgul, J.; Nowak, P.; Warszynski, P.; Kumakiri, I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 1945-1953. [CrossRef] open in new tab
  23. Kowalska, E.; Wei, Z.; Karabiyik, B.; Herissan, A.; Janczarek, M.; Endo, M.; Markowska-Szczupak, A.; Remita, H.; Ohtani, B. Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Catal. Today 2015, 252, 136-142. [CrossRef] open in new tab
  24. Janczarek, M.; Wei, Z.; Endo, M.; Ohtani, B.; Kowalska, E. Silver-and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. J. Photonics Energy 2017, 7, 012008. [CrossRef] open in new tab
  25. Wei, Z.; Janczarek, M.; Endo, M.; Colbeau-Justin, C.; Ohtani, B.; Kowalska, E. Silver-modified octahedral anatase particles as plasmonic photocatalyst. Catal. Today 2018, 310, 19-25. [CrossRef] [PubMed] open in new tab
  26. Zhang, H.; Wang, G.; Chen, D.; Lv, X.; Li, J. Tuning photoelectrochemical performances of Ag-TiO 2 nanocomposites via reduction/oxidation of Ag. Chem. Mater. 2008, 20, 6543-6549. [CrossRef] open in new tab
  27. Priya, R.; Baiju, K.V.; Shukla, S.; Biju, S.; Reddy, M.L.P.; Patil, K.; Warrier, K.G.K. Comparing ultraviolet and chemical reduction techniques for enhancing photocatalytic activity of silver oxide/silver deposited nanocrystalline anatase titania. J. Phys. Chem. C 2009, 113, 6243-6255. [CrossRef] open in new tab
  28. Kang, J.G.; Sohn, Y. Interfacial nature of Ag nanoparticles supported on TiO 2 photocatalysts. J. Mater. Sci. 2012, 47, 824-832. [CrossRef] open in new tab
  29. Liu, C.; Cao, C.; Luo, X.; Luo, S. Ag-bridged Ag 2 O nanowire network/TiO 2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard. Mater. 2015, 285, 319-324. [CrossRef] open in new tab
  30. Cui, Y.; Ma, Q.; Deng, X.; Meng, Q.; Cheng, X.; Xie, M.; Li, X.; Cheng, Q.; Liu, H. Fabrication of Ag-Ag 2 O/reduced TiO 2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for degradation of diclofenac solution. Appl. Catal. B Environ. 2017, 206, 136-145. [CrossRef] open in new tab
  31. Grabowska, E.; Zaleska, A.; Sorgues, S.; Kunst, M.; Etcheberry, A.; Colbeau-Justin, C.; Remita, H. Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys. Chem. C 2013, 117, 1955-1962. [CrossRef] open in new tab
  32. Mendez-Medrano, M.G.; Kowalska, E.; Lehoux, A.; Herissan, A.; Ohtani, B.; Bahena, D.; Briois, V.; Colbeau-Justin, C.; Rodriguez-Lopez, J.; Remita, H. Surface modification of TiO 2 with Ag nanoparticles and CuO nanoclusters for applications in photocatalysis. J. Phys. Chem. C 2016, 120, 5143-5154. [CrossRef] open in new tab
  33. Zielinska, A.; Kowalska, E.; Sobczak, J.W.; Lacka, I.; Gazda, M.; Ohtani, B.; Hupka, J.; Zaleska, A. Silver-doped TiO 2 prepared by microemulsion method: Surface properties, bio-and photoactivity. Sep. Purif. Technol. 2010, 72, 309-318. [CrossRef] open in new tab
  34. Sclafani, A.; Herrmann, J.-M. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol. A 1998, 113, 181-188. [CrossRef] open in new tab
  35. Herrmann, J.M.; Tahiri, H.; AitIchou, Y.; Lassaletta, G.; GonzalezElipe, A.R.; Fernandez, A. Characterization and photocatalytic activity in aqueous medium of TiO 2 and Ag-TiO 2 coatings on quartz. Appl. Catal. B Environ. 1997, 13, 219-228. [CrossRef] open in new tab
  36. Sclafani, A.; Mozzanega, M.N.; Pichat, P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A 1991, 59, 181-189. [CrossRef] open in new tab
  37. Ohtani, B.; Kakimoto, M.; Miyadzu, H.; Nishimoto, S.; Kagiya, T. Effect of surface-adsorbed 2-propanol on the photocatalytic reduction of silver and/or nitrate ions in acidic TiO 2 suspensions. J. Phys. Chem. 1988, 92, 5773-5777. [CrossRef] open in new tab
  38. Nishimoto, S.; Ohtani, B.; Kajiwara, H.; Kagiya, T. Photoinduced oxygen formation and silver metal deposition in aqueous solutions of various silver salts by suspended titanium dioxide powder. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1983, 79, 2685-2694. [CrossRef] open in new tab
  39. Lalitha, K.; Reddy, J.K.; Sharma, M.V.P.; Kumari, V.D.; Subrahmanyam, M. Continuous hydrogen production activity over finely dispersed Ag 2 O/TiO 2 catalysts from methanol:water mixtures under solar irradiation: A structure-activity correlation. Int. J. Hydrogen Energy 2010, 35, 3991-4001. [CrossRef] open in new tab
  40. You, Y.; Wan, L.; Zhang, S.; Xu, D. Effect of different doping methods on microstructure and photo-catalytic activity of Ag 2 O-TiO 2 nanofibers. Mater. Res. Bull. 2010, 45, 1850-1854. [CrossRef] open in new tab
  41. Zhou, W.; Liu, H.; Liu, D.; Du, G.; Cui, J. Ag 2 O/TiO 2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces 2010, 2, 2385-2392. [CrossRef] open in new tab
  42. Chen, F.; Liu, Z.; Liu, Y.; Fang, P.; Dai, Y. Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag 2 O-modified TiO 2 -based nanosheet. Chem. Eng. J. 2013, 221, 283-291. [CrossRef] open in new tab
  43. Sarkar, D.; Ghosh, C.K.; Mukherjee, S.; Chattopadhyay, K.K. Three dimensional Ag 2 O/TiO 2 Type-II (p−n) nanoheterojunctions for superior photocatalytic ctivity. ACS Appl. Mater. Interfaces 2013, 5, 331-337. [CrossRef] [PubMed] open in new tab
  44. Jiang, B.; Jiang, L.; Shi, X.; Wang, W.; Li, G.; Zhu, F.; Zhang, D. Ag 2 O/TiO 2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel Sci. Technol. 2015, 73, 314-321. [CrossRef] open in new tab
  45. Ren, H.T.; Jia, S.Y.; Zou, J.J.; Wu, S.H.; Han, X. A facile preparation of Ag 2 O/P25 photocatalyst for selective reductionof nitrate. Appl. Catal. B Environ. 2015, 176, 53-61. [CrossRef] open in new tab
  46. Sadanandam, G.; Kumari, V.D.; Scurrell, M.S. Highly stabilized Ag 2 O-loaded nano TiO 2 for hydrogen production from glycerol: Water mixtures under solar light irradiation. Int. J. Hydrogen Energy 2016, 42, 807-820. [CrossRef] open in new tab
  47. Wei, N.; Cui, H.; Song, Q.; Zhang, L.; Song, X.; Wang, K.; Zhang, Y.; Li, J.; Wen, J.; Tian, J. Ag 2 O nanoparticle/TiO 2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl. Catal. B Environ. 2016, 198, 83-90. [CrossRef] open in new tab
  48. Liu, B.; Mu, L.; Han, B.; Zhang, J.; Shi, H. Fabrication of TiO 2 /Ag 2 O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Appl. Surf. Sci. 2017, 396, 1596-1603. [CrossRef] open in new tab
  49. Zelekew, O.A.; Kuo, D.H.; Yassin, J.M.; Ahmed, K.E.; Abdullah, H. Synthesis of efficient silica supported TiO 2 /Ag 2 O heterostructured catalyst with enhanced photocatalytic performance. Appl. Surf. Sci. 2017, 410, 454-463. [CrossRef] open in new tab
  50. Liu, G.; Wang, G.; Hu, Z.; Su, Y.; Zhao, L. Ag 2 O nanoparticles decorated TiO 2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl. Surf. Sci. 2019, 465, 902-910. [CrossRef] open in new tab
  51. Jiang, B.; Hou, Z.; Tian, C.; Zhou, W.; Zhang, X.; Wu, A.; Tian, G.; Pan, K.; Ren, Z.; Fu, H. A facile and green synthesis route towards two-dimensional TiO 2 @Ag heterojunction structure with enhanced visible light photocatalytic activity. Cryst. Eng. Commun. 2013, 15, 5821-5827. [CrossRef] open in new tab
  52. Wang, K.L.; Wei, Z.S.; Ohtani, B.; Kowalska, E. Interparticle electron transfer in methanol dehydrogenation on platinum-loaded titania particles prepared from P25. Catal. Today 2018, 303, 327-333. [CrossRef] open in new tab
  53. Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem. Phys. Lett. 2006, 429, 606-610. [CrossRef] open in new tab
  54. Kowalska, E.; Mahaney, O.O.P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344-2355. [CrossRef] [PubMed] open in new tab
  55. Souri, D.; Honarvar, F.; Tahan, Z.E. Characterization of semiconducting mixed electronic-ionic TeO 2 -V 2 O 5 -Ag 2 O glasses by employing ultrasonic measurements and Vicker's microhardness. J. Alloys Compd. 2017, 699, 601-610. [CrossRef] open in new tab
  56. Peyser, L.A.; Vinson, A.E.; Bartko, A.P.; Dickson, R.M. Photoactivated fluorescence from individual silver nanoclusters. Science 2001, 291, 103-106. [CrossRef] open in new tab
  57. Ren, H.T.; Yang, Q. Fabrication of Ag 2 O/TiO 2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method. Appl. Surf. Sci. 2017, 396, 530-538. [CrossRef] open in new tab
  58. Wei, Z.; Endo, M.; Wang, K.; Charbit, E.; Markowska-Szczupak, A.; Ohtani, B.; Kowalska, E. Noble metal-modified octahedral anatase titania particles with enhanced activity for decomposition of chemical and microbiological pollutants. Chem. Eng. J. 2017, 318, 121-134. [CrossRef] open in new tab
  59. Janczarek, M.; Endo, M.; Zhang, D.; Wang, K.; Kowalska, E. Enhanced photocatalytic and antimicrobial prformance of cuprous oxide/titania: The effect of titania matrix. Materials. 2018, 11, 2069. [CrossRef] open in new tab
  60. Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, A.; Wojtyla, S.; Macyk, W. On oxygen activation at rutile- and anatase-TiO 2 . ACS Catal. 2015, 5, 7424-7431. [CrossRef] open in new tab
  61. Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO 2 . Nat. Mater. 2013, 12, 798-801. [CrossRef] open in new tab
  62. Allen, J.P.; Scanlon, D.O.; Watson, G.W. Electronic structures of silver oxides. Phys. Rev. B 2011, 84, 115141. [CrossRef] open in new tab
  63. Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.Z.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916-924. [CrossRef] [PubMed] open in new tab
  64. Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75, 2973-2976. [CrossRef] open in new tab
  65. Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. 2014, 44, 278-284. [CrossRef] open in new tab
  66. Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO 2 and Ag 2 O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011, 6, 933-940. [CrossRef] [PubMed] open in new tab
  67. Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2015, 73, 49-57. [CrossRef] [PubMed] open in new tab
  68. Yang, J.-Y.; Kim, H.-J.; Chung, C.-H. Photocatalytic antifungla activity against Candida albicans by TiO 2 coated acrylic resign denture base. J. Korean Acad. Prosthodont. 2006, 44, 284-294.
  69. Jones, L.; Oshea, P. The electrostatic nature of the cell-surface of Candida albicans-A role in adhesion. Exp. Mycol. 1994, 18, 111-120. [CrossRef] open in new tab
  70. Carlile, M.J. The Photobiology of Fungi. Annu. Rev. Plant Physiol. 1965, 16, 175-202. [CrossRef] open in new tab
  71. Hill, E.P. Effect of light on growth and sporulation of Aspergillus ornatus. J. Gen. Microbiol. 1976, 95, 39-44. [CrossRef] open in new tab
  72. Kopke, K.; Hoff, B.; Bloemendal, S.; Katschorowski, A.; Kamerewerd, J.; Kuck, U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot. Cell 2013, 12, 299-310. [CrossRef] open in new tab
  73. Markowska-Szczupak, A.; Ulfig, K.; Morawski, A.W. Antifungal effect of titanium dioxide, indoor light and the photocatalytic process in vitro test on different media. J. Adv. Oxid. Technol. 2012, 15, 30-33. [CrossRef] open in new tab
  74. Markowska-Szczupak, A.; Wang, K.L.; Rokicka, P.; Endo, M.; Wei, Z.S.; Ohtani, B.; Morawski, A.W.; Kowalska, E. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. J. Photochem. Photobiol. B 2015, 151, 54-62. [CrossRef] [PubMed] open in new tab
  75. Raliya, R.; Biswas, P.; Tarafdar, J.C. TiO 2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. 2015, 5, 22-26. [CrossRef] [PubMed] open in new tab
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags