Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors - Publication - Bridge of Knowledge

Search

Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors

Abstract

This paper presents a portable exhaled breath analyser, developed to detect selected diseases. The set-up employs resistive gas sensors: commercial MEMS sensors and prototype gas sensors made of WO3 gas sensing layers doped with various metal ingredients. The set-up can modulate the gas sensors by applying UV light to induce physical changes of the gas sensing layers. The sensors are placed in a tiny gas chamber of a volume of about 22 ml. Breath samples can be either injected or blown into the gas chamber when an additional pump is used to select the last breath phase. DC resistance and resistance fluctuations of selected sensors using separate channels are recorded by an external data acquisition board. Low-noise amplifiers with a selected gain were used together with a necessary bias circuit. The set-up monitors other atmospheric parameters interacting with the responses of resistive gas sensors (humidity, temperature, atmospheric pressure). The recorded data may be further analysed to determine optimal detection methods.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 98 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 25, pages 551 - 560,
ISSN: 0860-8229
Language:
English
Publication year:
2018
Bibliographic description:
Kwiatkowski A., Chludziński T., Smulko J.: Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors// Metrology and Measurement Systems. -Vol. 25, iss. 3 (2018), s.551-560
DOI:
Digital Object Identifier (open in new tab) 10.24425/123892
Bibliography: test
  1. Byun, H.G., Yu, J.B., Huh, J.S., Lim, J.O. (2014). Exhaled Breath Analysis System based on Elec- tronic Nose Techniques Applicable to Lung Diseases. Hanyang Medical Reviews, 34(3), 125-129. open in new tab
  2. Konvalina, G., Haick, H. (2013). Sensors for breath testing: from nanomaterials to comprehensive disease detection. Accounts of chemical research, 47(1), 66-76. open in new tab
  3. Bielecki, Z., Stacewicz, T., Wojtas, J., Mikołajczyk, J., Szabra, D., Prokopiuk, A. (2018). Selected optoelectronic sensors in medical applications. Opto-Electronics Review, 26(2), 122-133. open in new tab
  4. Mikołajczyk, J., Wojtas, J., Bielecki, Z., Stacewicz, T., Szabra, D., Magryta, P., Panek, M. (2016). System of optoelectronic sensors for breath analysis. Metrol. Meas. Syst., 23(3), 481-489. open in new tab
  5. Lentka, Ł., Smulko, J.M., Ionescu, R., Granqvist, C.G., Kish, L.B. (2015). Determination of gas mix- ture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst., 22(3), 341-350. open in new tab
  6. Ederth, J., Smulko, J.M., Kish, L.B., Heszler, P., Granqvist, C.G. (2006). Comparison of classical and fluctuation-enhanced gas sensing with Pd x WO 3 nanoparticle films. Sensors and Actuators B: Chemi- cal, 113(1), 310-315. open in new tab
  7. Lawal, O., Ahmed, W.M., Nijsen, T. M., Goodacre, R., Fowler, S.J. (2017). Exhaled breath analysis: a review of 'breath-taking'methods for off-line analysis. Metabolomics, 13(10), 110. open in new tab
  8. Szabra, D., Prokopiuk, A., Mikołajczyk, J., Ligor, T., Buszewski, B., Bielecki, Z. (2017). Air sampling unit for breath analyzers. Review of Scientific Instruments, 88(11), 115006. open in new tab
  9. Wozniak, L., Kalinowski, P., Jasinski, G., Jasinski, P. (2018). FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity inter- ference. Microelectronics Reliability, 84, 163-169. open in new tab
  10. Osowski, S., Siwek, K., Grzywacz, T., Brudzewski, K. (2014). Differential electronic nose in on-line dynamic measurements. Metrol. Meas. Syst., 21(4), 649-662. open in new tab
  11. Smulko, J.M., Trawka, M., Granqvist, C.G., Ionescu, R., Annanouch, F., Llobet, E., Kish, L.B. (2015). New approaches for improving selectivity and sensitivity of resistive gas sensors: a review. Sensor Review, 35(4), 340-347. open in new tab
  12. Trawka, M., Smulko, J., Hasse, L., Granqvist, C.G., Annanouch, F.E., Ionescu, R. (2016). Fluctuation enhanced gas sensing with WO 3 -based nanoparticle gas sensors modulated by UV light at selected wavelengths. Sensors and Actuators B: Chemical, 234, 453-461. open in new tab
  13. Wang, X., Li, M., Ding, B., Liu, Y., Chen, T. (2017). UV-enhanced ethanol-sensing properties of TiO 2 - decorated ZnSnO 3 hollow microcubes at low temperature. Journal of Materials Science: Materials in Electronics, 28(17), 12399-12407. open in new tab
  14. Li, H., Gao, Z., Lin, W., He, W., Li, J., Yang, Y. (2017). Improving the sensitive property of graphene- based gas sensor by illumination and heating. Sensor Review, 37(2), 142-146. open in new tab
  15. Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst., 16(3), 457-464.
  16. Ayhan, B., Kwan, C., Zhou, J., Kish, L.B., Benkstein, K.D., Rogers, P.H., Semancik, S. (2013). Fluc- tuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas de- tection and classification. Sensors and Actuators B: Chemical, 188, 651-660. open in new tab
  17. Kalinowski, P., Woźniak, Ł., Strzelczyk, A., Jasinski, P., Jasinski, G. (2013). Efficiency of linear and non-linear classifiers for gas identification from electrocatalytic gas sensor. Metrol. Meas. Syst., 20(3), 501-512. open in new tab
  18. Kish, L.B., Vajtai, R., Granqvist, C.G. (2000). Extracting information from noise spectra of chemical sensors: single sensor electronic noses and tongues. Sensors and Actuators B: Chemical, 71(1), 55-59. open in new tab
  19. Pardo, M., Sberveglieri, G. (2005). Classification of electronic nose data with support vector machines. Sensors and Actuators B: Chemical, 107(2), 730-737. open in new tab
  20. Kaur, R., Kumar, R., Gulati, A., Ghanshyam, C., Kapur, P., Bhondekar, A.P. (2012). Enhancing elec- tronic nose performance: A novel feature selection approach using dynamic social impact theory and moving window time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). Sensors and Actuators B: Chemical, 166, 309-319. open in new tab
  21. Staerz, A., Weimar, U., Barsan, N. (2016). Understanding the potential of WO 3 based sensors for breath analysis. Sensors, 16(11), 1815. open in new tab
  22. Zakrzewska, K. (2001). Mixed oxides as gas sensors. Thin Solid Films, 391, 229-238. open in new tab
  23. Korotcenkov, G., Cho, B.K. (2013). Engineering approaches for the improvement of conductometric gas sensor parameters. Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sensors and Actuators B: Chemical, 188, 709-728. open in new tab
  24. Sedlak, P., Sikula, J., Majzner, J., Vrnata, M., Fitl, P., Kopecky, D., Handel, P.H. (2012). Adsorption- desorption noise in QCM gas sensors. Sensors and Actuators B: Chemical, 166, 264-268. open in new tab
  25. Kotarski, M.M., Smulko, J.M. (2010). Hazardous gases detection by fluctuation-enhanced gas sensing. Fluctuation and Noise Letters, 9(04), 359-371. open in new tab
  26. Mingesz, R., Vadai, G., Gingl, Z. (2014). Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes. Fluctuation and Noise Letters, 13(02), 1450011. open in new tab
Verified by:
Gdańsk University of Technology

seen 183 times

Recommended for you

Meta Tags