Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives - Publication - Bridge of Knowledge

Search

Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives

Abstract

The presence of antibiotics and their metabolites in the aquatic environment exerts a negative impact on all organisms. Moreover, the easy migration of these substances to drinking water may also have serious consequences for public health, such as drug resistance. Although antibiotics and their metabolites are detected in surface waters and wastewater, there are still no systemic solutions preventing environmental pollution with these substances. The procedure for quantification of antibiotics usually involves solid-phase extraction (SPE) followed by instrumental analysis typically using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS), which provides sensitivity, selectivity and reliability of results. Therefore, it is necessary to take decisive steps aimed at the determination of critical concentrations of antibiotics, which will make it possible to maintain safe values that will not exert a negative impact on the natural environment and human health. This work presents the current state of knowledge based on data from 2009 to 2018 (review of ten years of scientific papers) on the presence of antibiotics and their metabolites in the aquatic environment in Poland and Europe and methods used for the determination of antibiotics in different types of water (surface water and wastewater). The main strategies used for the removal of antibiotics during wastewater treatment processes in the context of antibiotics’ concentrations were also presented.

Citations

  • 1 1 4

    CrossRef

  • 0

    Web of Science

  • 1 1 8

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 251 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MICROCHEMICAL JOURNAL no. 147, pages 729 - 740,
ISSN: 0026-265X
Language:
English
Publication year:
2019
Bibliographic description:
Szymańska U., Wiergowski M., Sołtyszewski I., Kuzemko J., Wiergowska G., Woźniak M. K.: Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives// MICROCHEMICAL JOURNAL. -Vol. 147, (2019), s.729-740
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.microc.2019.04.003
Bibliography: test
  1. https://doi:10.1016/J.WATRES.2016.02.003. open in new tab
  2. K.O. K'oreje, L. Vergeynst, D. Ombaka, P. De Wispelaere, M. Okoth, H. Van Langenhove, K. Demeestere, Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya, Chemosphere. 149 (2016) 238-244. open in new tab
  3. https://doi:10.1016/J.CHEMOSPHERE.2016.01.095. open in new tab
  4. R. Diaz, M. Ibáñez, J.V. Sancho, F. Hernández, Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters, J. Chromatogr. A. 1276 (2013) 47-57. open in new tab
  5. https://doi:10.1016/j.chroma.2012.12.030. open in new tab
  6. M. Topal, E.I. Arslan Topal, Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water, Environ. Monit. Assess. 187 (2015) 750. https://doi:10.1007/s10661- 015-4978-4. open in new tab
  7. E.L. Schymanski, H.P. Singer, J. Slobodnik, I.M. Ipolyi, P. Oswald, M. Krauss, T. open in new tab
  8. Schulze, P. Haglund, T. Letzel, S. Grosse, N.S. Thomaidis, A. Bletsou, C. Zwiener, M. Ibáñez, T. Portolés, R. De Boer, M.J. Reid, M. Onghena, U. Kunkel, W. Schulz, A.
  9. Guillon, N. Noyon, G. Leroy, P. Bados, S. Bogialli, D. Stipaničev, P. Rostkowski, J.
  10. Hollender, Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis, Anal. Bioanal. Chem. 407 (2015) 6237-6255. https://doi:10.1007/s00216-015-8681-7. open in new tab
  11. M.K. Woźniak, E. Jaszczak, M. Wiergowski, Ż. Polkowska, J. Namieśnik, M. Biziuk, Meconium analysis as a promising diagnostic tool for monitoring fetal exposure to toxic substances: Recent trends and perspectives, TrAC -Trends Anal. Chem. 109 (2018) 124-141. https://doi:10.1016/j.trac.2018.09.025. open in new tab
  12. S. Holopainen, M. Nousiainen, M.E.T. Sillanpää, O. Anttalainen, Sample-extraction methods for ion-mobility spectrometry in water analysis, TrAC Trends Anal. Chem. 37 (2012) 124-134. https://doi:10.1016/J.TRAC.2012.03.014. open in new tab
  13. S. Stephan, J. Hippler, T. Köhler, A.A. Deeb, T.C. Schmidt, O.J. Schmitz, Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database, Anal. Bioanal. Chem. 408 (2016) 6545-6555. open in new tab
  14. https://doi:10.1007/s00216-016-9820-5. open in new tab
  15. S. Li, J. Jia, X. Gao, X. He, J. Li, Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry, Anal. Chim. Acta. 720 (2012) 97- 103. https://doi:10.1016/j.aca.2012.01.014. open in new tab
  16. K. Li, P. Zhang, L. Ge, H. Ren, C. Yu, X. Chen, Y. Zhao, Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics, Chemosphere. 111 (2014) 278-282. open in new tab
  17. https://doi:10.1016/J.CHEMOSPHERE.2014.04.052. open in new tab
  18. L. Vergeynst, A. Haeck, P. De Wispelaere, H. Van Langenhove, K. Demeestere, Multi- residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study, Chemosphere. 119 (2015) S2-S8. open in new tab
  19. https://doi:10.1016/J.CHEMOSPHERE.2014.03.069. open in new tab
  20. C.L. Chitescu, E. Oosterink, J. de Jong, A.A. Linda Stolker, Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC-Exactive Orbitrap MS, Anal. Bioanal. Chem. 403 (2012) 2997-3011. https://doi:10.1007/s00216-012-5888-8. open in new tab
  21. J.K. Challis, J.C. Carlson, K.J. Friesen, M.L. Hanson, C.S. Wong, Aquatic photochemistry of the sulfonamide antibiotic sulfapyridine, J. Photochem. Photobiol. A Chem. 262 (2013) 14-21. https://doi:10.1016/J.JPHOTOCHEM.2013.04.009. open in new tab
  22. I. Senta, I. Krizman-Matasic, S. Terzic, M. Ahel, Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A. 1509 (2017) 60-68. open in new tab
  23. https://doi:10.1016/j.chroma.2017.06.005. open in new tab
  24. L. Lien, N. Hoa, N. Chuc, N. Thoa, H. Phuc, V. Diwan, N. Dat, A. Tamhankar, C. Lundborg, Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from Vietnam, Int. J. Environ. Res. Public Health. 13 (2016) 588. open in new tab
  25. https://doi:10.3390/ijerph13060588. open in new tab
  26. S. Castiglioni, L. Bijlsma, A. Covaci, E. Emke, F. Hernández, M. Reid, C. Ort, K. V. open in new tab
  27. Thomas, A.L.N. van Nuijs, P. de Voogt, E. Zuccato, Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers, Environ. Sci. Technol. 47 (2013) 1452-1460.
  28. https://doi:10.1021/es302722f. open in new tab
  29. S. Castiglioni, K. V. Thomas, B. Kasprzyk-Hordern, L. Vandam, P. Griffiths, Testing wastewater to detect illicit drugs: State of the art, potential and research needs, Sci. Total Environ. 487 (2014) 613-620. https://doi:10.1016/J.SCITOTENV.2013.10.034. open in new tab
  30. J. Wojkowska-Mach, B. Godman, A. Glassman, A. Kurdi, A. Pilc, A. Rozanska, S. Skoczyński, M. Wałaszek, T. Bochenek, Antibiotic consumption and antimicrobial resistance in Poland; findings and implications, Antimicrob. Resist. Infect. Control. 7 (2018) 136. https://doi:10.1186/s13756-018-0428-8. open in new tab
  31. Aminoglicosides <1000-10000 open in new tab
  32. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  33. Azithromycin 32.15-35.66 open in new tab
  34. Portugal, Montego River, Tagus River [25] open in new tab
  35. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  36. Portugal, Montego River, Tagus River [25] open in new tab
  37. Portugal, Tejo River (estuary)
  38. Portugal, Tejo River (estuary)
  39. Diaminopyrimidines <50 open in new tab
  40. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  41. Portugal, Montego River, Tagus River [25] 11-21 UK, Taff [27] open in new tab
  42. Portugal, Tejo River (estuary)
  43. Portugal, Tejo River (estuary)
  44. Fluoroquinolones <20
  45. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  46. Lincosamides <20
  47. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  48. Macrolides <50-5000 open in new tab
  49. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  50. Pleuromutilins <20 open in new tab
  51. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  52. Portugal, Douro
  53. Portugal, Tejo River (estuary)
  54. Portugal, Tejo River (estuary)
  55. Portugal, Tejo River (estuary)
  56. Portugal, Tejo River (estuary)
  57. Sulphonamides <50
  58. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  59. Tetracyclines <20-50 open in new tab
  60. Poland, six rivers (Vistula, Warta, Odra, Brda, Wkra, and Dunajec) and three lakes (Lanskie, Maroz, and Rybnik power station reservoir)
  61. Portugal, Douro [19] 30-120 UK, Taff [27] Trimethoprim 2.25-7.76 (A 5.00)
  62. Portugal, Tejo River (estuary)
  63. A -the average value, M -the median value open in new tab
Verified by:
Gdańsk University of Technology

seen 225 times

Recommended for you

Meta Tags