Ranking of Heterogeneous Catalysts Metals by Their Greenness - Publication - Bridge of Knowledge

Search

Ranking of Heterogeneous Catalysts Metals by Their Greenness

Abstract

Catalysis is very important process in industry and laboratory practice, especially from the point of green chemistry principles. However, eco-friendly character of heterogeneous catalysts, containing transition metal components has not been evaluated, yet. Therefore, we perform a comprehensive assessment of 18 heterogeneous metal catalysts (Pd, Pt, V, Co, Ni, Mo, Ru, Mn, Au, Cu, Cd, Zr, Fe, Rh, Ir, Sn, Zn, Ag) using multicriteria decision analysis approach. The ranking of alternatives according to relevant criteria like toxicity of pure metals and metal salts towards fish and Daphnia magna, algae/plants, metal toxicity towards rats via ingestion, carcinogenicity, the endangerment degree of metals, boiling point and energy for atom detachment, estimated as metal-metal bond strength in diatomic transition metal units, classification of elemental impurities according to International Conference on Harmonization (ICH)and their degree of importance is presented. Life cycle assessment (LCA) related parameters of metals have been also included. The assessment showed ruthenium, iron and molybdenum as the most favourable alternatives, in contrary to nickel, cobalt and rhodium. Results of environmental evaluation strictly depend on chosen scenario of assessment, in terms of toxicity, endangered elements or LCA. Sensitivity analyses towards variations in input data and applied weights, prove that results are reliable. Multicriteria decision analysis can be successfully applied in metal catalysts evaluation for particular case studies of different reactions.

Citations

  • 3 2

    CrossRef

  • 0

    Web of Science

  • 3 1

    Scopus

Cite as

Full text

download paper
downloaded 83 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ACS Sustainable Chemistry & Engineering no. 7, pages 18434 - 18443,
ISSN: 2168-0485
Language:
English
Publication year:
2019
Bibliographic description:
Bystrzanowska M., Petkov P., Tobiszewski M.: Ranking of Heterogeneous Catalysts Metals by Their Greenness// ACS Sustainable Chemistry & Engineering -Vol. 7,iss. 22 (2019), s.18434-18443
DOI:
Digital Object Identifier (open in new tab) 10.1021/acssuschemeng.9b04230
Bibliography: test
  1. Collins, T. J.; Gordon-Wylie, S. W.; Bartos, M. J.; Horwitz, C. P.; Woomer, C. G.; Williams, S. A.; Patterson, R. E.; Vuocolo, L. D.; Paterno, S. A.; Strazisar, S. A.; Peraino, D. K. Green chemistry: Macmillan encyclopedia of chemistry, 1997, 2, 691-697. open in new tab
  2. Anastas, P. T.; Warner, J. C. Theory and Practice. In Green Chemistry; Oxford University Press: New York, 1998 open in new tab
  3. Anastas, P. T.; Warner, J. C. Principles of green chemistry. Green chemistry: Theory and practice, 1998, 29- 56. open in new tab
  4. Farnetti, E.; Di Monte, R.; Kašpar, J. Homogeneous and heterogeneous catalysis. Inorg. Bioinorg. Chem., 2009, 2, 50.
  5. Vedrine, J. C. Fundamentals of heterogeneous catalysis. In Metal Oxides in Heterogeneous Catalysis; open in new tab
  6. Verdine, J.C, Ed.; Elsevier Metal Oxide Series: Cambridge, 2018; pp 1-42 open in new tab
  7. Anastas, P. T.; Bartlett, L. B.; Kirchhoff, M. M.; Williamson, T. C. The role of catalysis in the design, development, and implementation of green chemistry. Catal. Today, 2000, 55(1-2), 11-22, DOI 10.1016/S0920 open in new tab
  8. Centi, G.; Perathoner, S. Catalysis and sustainable (green) chemistry. Catal. Today, 2003, 77(4), 287-297, DOI 10.1016/S0920-5861(02)00374-7. open in new tab
  9. Bystrzanowska, M.; Pena-Pereira, F.; Marcinkowski, Ł.; Tobiszewski, M. How green are ionic liquids?-A multicriteria decision analysis approach. Ecotoxicol. Environ. Saf., 2019, 174, 455-458, DOI 10.1016/j.ecoenv.2019.03.014. open in new tab
  10. Nuss, P., Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS One, 2014, 9(7), 1-12, DOI 10.1371/journal.pone.0101298. open in new tab
  11. Tobiszewski, M.; Namieśnik, J.; Pena-Pereira, F. A derivatisation agent selection guide. Green Chem., 2017, 19(24), 5911-5922, DOI 10.1039/C7GC03108D. open in new tab
  12. Chen, M.; Chen, S.; Du, M.; Tang, S.; Chen, M.; Wang, W.; Yang, H.; Qiaoyu, C.; Chen, J. Toxic effect of palladium on embryonic development of zebrafish. Aquat. Toxicol., 2015, 159, 208-216, DOI 10.1016/j.aquatox.2014.12.015. open in new tab
  13. Kovrižnych, J. A.; Sotníková, R.; Zeljenková, D.; Rollerová, E.; Szabová, E.; Wimmerová, S. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages-comparative study. Interdiscipl. Toxicol., 2013, 6(2), 67-73, DOI 10.2478/intox-2013-0012. open in new tab
  14. Anderson, P. D.; Spear, P.; d'Apollinia, S.; Perry, S.; De Luca, J.; Dick, J. The multiple toxicity of vanadium, nickel and phenol to fish. Alberta Oils Sands Environmental Research Program Alberta Environment/Environment Canada, Alberta, 1979, 1-109, DOI 10.7939/R33R0PT69. open in new tab
  15. Marr, J. C. A.; Hansen, J. A.; Meyer, J. S.; Cacela, D.; Podrabsky, T.; Lipton, J.; Bergman, H. L. Toxicity of cobalt and copper to rainbow trout: application of a mechanistic model for predicting survival. Aquat. Toxicol., 1998, 43(4), 225-238, DOI 10.1016/S0166-445X(98)00061-7. open in new tab
  16. Shuhaimi-Othman, M.; Nadzifah, Y.; Ahmad, A. K. Toxicity of copper and cadmium to freshwater fishes. World Acad. Sci. Eng. Technol., 2010, 65, 869-871. open in new tab
  17. Couture, P.; Blaise, C.; Cluis, D.; Bastien, C. Zirconium toxicity assessment using bacteria, algae and fish assays. Water Air Soil Poll., 1989, 47(1-2), 87-100, DOI 10.1007/BF00469000. open in new tab
  18. Michelsensgatan, H. Screening of platinum group metals; open in new tab
  19. Pt, Rh and Pl. , SWECO VIAK Screening Report 2007:2 open in new tab
  20. Hamilton, S. J.; Buhl, K. J. Acute toxicity of boron, molybdenum, and selenium to fry of chinook salmon and coho salmon. Arch. Environ. Con. Tox., 1990, 19(3), 366-373, DOI 10.1007/BF01054980. open in new tab
  21. Pyle, G. G.; Swanson, S. M.; Lehmkuhl, D. M. Toxicity of uranium mine-receiving waters to caged fathead minnows, Pimephalespromelas. Ecotox. Environ. Safe., 2001, 48(2), 202-214, DOI 10.1006/eesa.2000.2016. open in new tab
  22. Nam, S. H.; Lee, W. M.; Shin, Y. J.; Yoon, S. J.; Kim, S. W.; Kwak, J. I.; An, Y. J. Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Res., 2014, 48, 126-136, DOI 10.1016/j.watres.2013.09.019. open in new tab
  23. Zimmermann, S.; Wolff, C.; Sures, B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environ. Pollut., 2017, 224, 368-376, DOI 10.1016/j.envpol.2017.02.016. open in new tab
  24. Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute toxicity of 50 metals to Daphnia magna. J. Appl. Toxicol., 2015, 35(7), 824-830, DOI 10.1002/jat.3078. open in new tab
  25. Guilhermino, L.; Diamantino, T. C.; Ribeiro, R.; Gonçalves, F.; Soares, A. M. Suitability of Test Media Containing EDTA for the Evaluation of Acute Metal Toxicity to Daphnia magna Straus. Ecotox. Environ. Safe., 1997, 38(3), 292-295, DOI 10.1006/eesa.1997.1599. open in new tab
  26. Biesinger, K. E.; Christensen, G. M. Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J. Fish Res. Board Can., 1972, 29(12), 1691-1700, DOI 10.1139/f72-269. open in new tab
  27. Carson, B. L. Toxicology Biological Monitoring of Metals in Humans; CRC Press: 2018 open in new tab
  28. Litchfield, J. J.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther., 1949, 96(2), 99-113.
  29. Holbrook Jr, D. J.; Washington, M. E.; Leake, H. B.; Brubaker, P. E. Studies on the evaluation of the toxicity of various salts of lead, manganese, platinum, and palladium. Environ. Health Perspect., 1975, 10, 95-101, DOI 10.1289/ehp.751095. open in new tab
  30. Egorova, K. S.; Ananikov, V. P. Toxicity of metal compounds: knowledge and myths. Organometallics, 2017, 36(21), 4071-4090, DOI 10.1289/ehp.751095. open in new tab
  31. Janz, G. J. Molten salts handbook. Elsevier: 2013 open in new tab
  32. Patnaik, P. Handbook of inorganic chemicals; New York: McGraw-Hill, 2003, Vol. 529
  33. Lide, D. R. (Ed.); open in new tab
  34. CRC Handbook of Chemistry and Physics; CRC press: 2004, Vol. 85 open in new tab
  35. Haynes, W. M. CRC Handbook of Chemistry and Physics. CRC press: 2014 open in new tab
  36. Nichenko, S.; Streit, M. Thermodynamic modelling of molybdenum behaviour in chloride molten salt. Proceedings of Top Fuel 2015, 2015, 13-17, DOI 10.13140/RG.2.1.1370.6965. open in new tab
  37. Luo, Y. R. Comprehensive handbook of chemical bond energies. CRC press., 2007.; https://notendur.hi.is/agust/rannsoknir/papers/2010-91-CRC-BDEs-Tables.pdf (accessed 25.08.19) open in new tab
  38. Roy, G. Les éléments du groupe platine (Pd, Pt et Rh) dans les eaux de surface et leur toxicité chez l'algue verte Chlamydonomas reinhardtii (Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique), 2009.
  39. Sørensen, S. N., Engelbrekt, C., Lützhøft, H. C. H., Jiménez-Lamana, J., Noori, J. S., Alatraktchi, F. A., ... & Baun, A. A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ. Sci. Technol., 2016, 50(19), 10635-10643, DOI 10.1021/acs.est.6b01072. open in new tab
  40. Fargašová, A., Bumbálová, A., & Havránek, E. Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+, V5+) in freshwater alga Scenedesmus quadricauda. Chemosphere, 1999, 38(5), 1165-1173, DOI 10.1016/S0045-6535(98)00346-4. open in new tab
  41. Horvatic, J., Persic, V., Pavlic, Z., Stjepanovic, B., & Has-Schon, E. Toxicity of metals on the growth of Raphidocelis subcapitata and Chlorella kessleri using microplate bioassays. Fresen. Environ. Bull., 2007, 16(7), 826.
  42. Chen, C. Y., Lin, K. C., & Yang, D. T. Comparison of the relative toxicity relationships based on batch and continuous algal toxicity tests. Chemosphere, 1997, 35(9), 1959-1965, DOI 10.1016/S0045-6535(97)00270-1. open in new tab
  43. Christensen, E. R., Scherfig, J., Dixon, P. T. Effects of manganese, copper and lead on Selenastrum capricornutum and Chlorella stigmatophora. Water Res., 1979, 13(1), 79-92, DOI 10.1016/0043-1354(79)90258- 6. open in new tab
  44. Dědková, K., Bureš, Z., Palarčík, J., Vlček, M., Kukutschová, J. Acute aquatic toxicity of gold nanoparticles to freshwater green algae. NanoCon2014 materials, Bron, 2014. open in new tab
  45. Franklin, N. M., Stauber, J. L., Lim, R. P., Petocz, P. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ. Toxicol. Chem., 2002, 21(11), 2412-2422, DOI 10.1002/etc.5620211121. open in new tab
  46. Radetski, C. M., Ferard, J. F., Blaise, C. A semistatic microplate-based phytotoxicity test. Environ. Toxicol. Chem., 1995, 14(2), 299-302, DOI 10.1002/etc.5620140215. open in new tab
  47. Couture, P., Blaise, C., Cluis, D., Bastien, C. Zirconium toxicity assessment using bacteria, algae and fish assays. Water Air Soil Poll., 1989, 47(1-2), 87-100, DOI 10.1007/BF00469000. open in new tab
  48. Bednarova, I., Mikulaskova, H., Havelkova, B., Strakova, L., Beklova, M., Sochor, J., …, Kizek, R. Study of the influence of platinum, palladium and rhodium on duckweed (Lemna minor). Neuroendocrinol. Lett., 2014, 35(2), 35-42.
  49. Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C., & Barber, D. S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem., 2008, 27(9), 1972-1978, DOI open in new tab
  50. Organización Internacional de Normalización. (2006). ISO 14044: Environmental Management, Life Cycle Assessment, Requirements and Guidelines. ISO. open in new tab
  51. Hwang, C. L.; Yoon, K. P. Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag: New York, USA, 1981, DOI 10.1007/978-3-642-48318-9_3. open in new tab
  52. Yoon, K., A reconciliation among discrete compromise solutions. J. Oper. Res. Soc.,1987, 38(3), 277-286, DOI 10.1057/jors.1987.44. open in new tab
  53. Hwang, C. L.; Lai Y. J.; Liu T. Y. A new approach for multiple objective decision making. Comput. Oper. Res., 1993, 20, 889-899, DOI 10.1016/0305-0548(93)90109-V. open in new tab
  54. Rappaport, A. Sensitivity analysis in decision making, TAR, 1967,42, 441-456.
  55. Bystrzanowska, M.; Tobiszewski, M. How can analysts use multicriteria decision analysis?. Trends Anal. Chem., 2018, 105, 98-105, DOI 10.1016/j.trac.2018.05.003. open in new tab
  56. Edison, T. J. I., Sethuraman, M. G. Biogenic robust synthesis of silver nanoparticles using Punicagranatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4- nitrophenol. Spectrochim. Acta A: Mol. Biomol. Spectro, 2013, 104, 262-264, DOI 10.1016/j.saa.2012.11.084. open in new tab
  57. Vellaichamy, B., Periakaruppan, P. Silver-nanospheres as a green catalyst for the decontamination of hazardous pollutants. RSC Adv., 2015, 5(128), 105917-105924, DOI 10.1039/C5RA21599D . open in new tab
  58. Yeganeh-Faal, A., Bordbar, M., Negahdar, N., Nasrollahzadeh, M. Green synthesis of the Ag/ZnO nanocomposite using Valerianaofficinalis L. root extract: application as a reusable catalyst for the reduction of organic dyes in a very short time. IET Nanobiotechnol., 2017, 11(6), 669-676, DOI 10.1049/iet-nbt.2016.0198. open in new tab
  59. Harper, S. L., Carriere, J. L., Miller, J. M., Hutchison, J. E., Maddux, B. L., & Tanguay, R. L. Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS nano, 2011, 5(6), 4688-4697, DOI 10.1021/nn200546k. open in new tab
  60. Coradeghini, R., Gioria, S., García, C. P., Nativo, P., Franchini, F., Gilliland, D., ... open in new tab
  61. & Rossi, F. Size- dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett., 2013, 217(3), 205-216, DOI 10.1016/j.toxlet.2012.11.022. open in new tab
  62. Parsaee, Z. Sonochemical synthesis and DFT studies of nano novel Schiff base cadmium complexes: Green, efficient, recyclable catalysts and precursors of Cd NPs. J. Mol. Struct., 2017, 1146, 644-659, DOI 10.1016/j.molstruc.2017.06.049. open in new tab
  63. Li, P.; Regati, S.; Butcher, R. J.; Arman, H. D.; Chen, Z.; Xiang, S.; Chen, B.; Zhao, C. G. Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron Lett., 2011, 52(47), 6220-6222, DOI 10.1016/j.tetlet.2011.09.099. open in new tab
  64. Egorova, K. S.; Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Edit., 2016, 55(40), 12150-12162, DOI 10.1002/anie.201603777. open in new tab
  65. Cairo, G.; Bernuzzi, F.; Recalcati, S. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr., 2006, 1(1), 25-39, DOI 10.1007/BF02829934. open in new tab
  66. Sharma, R. K.; Agrawal, M. Biological effects of heavy metals: an overview. J. Environ. Biol., 2005, 26(2), 301-313. open in new tab
  67. Desoize, B. Metals and metal compounds in cancer treatment. Anticancer Res., 2004, 24(3A), 1529-1544. open in new tab
  68. Chen, D.; Milacic, V.; Frezza, M.; Dou, Q. P. Metal complexes, their cellular targets and potential for cancer therapy. Curr. Pharm. Des., 2009, 15(7), 777-791, DOI 10.2174/138161209787582183. open in new tab
  69. Zimmermann, S.; Messerschmidt, J.; von Bohlen, A.; Sures, B. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissenapolymorpha). Environ. Res., 2005, 98(2), 203-209, DOI 10.1016/j.envres.2004.08.005. open in new tab
  70. Dolara, P. Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). Int. J. Food Sci. Nutr., 2014, 65(8), 911- 924, DOI 10.3109/09637486.2014.937801. open in new tab
  71. Oller, A. R.; Cappellini, D.; Henderson, R. G.; Bates, H. K. Comparison of nickel release in solutions used for the identification of water-soluble nickel exposures and in synthetic lung fluids. J. Environ. Monit., 2009, 11(4), 823-829, DOI 10.1039/B820926J. open in new tab
  72. Semisch, A.; Ohle, J.; Witt, B.; Hartwig, A. Cytotoxicity and genotoxicity of nano-and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol., 2014, 11(1), 10-25, DOI 10.1186/1743-8977-11-10. open in new tab
  73. Oller, A. R. Respiratory carcinogenicity assessment of soluble nickel compounds. Environ. Health Perspect., 2002, 110(suppl 5), 841-844, DOI 10.1289/ehp.02110s5841. open in new tab
Verified by:
Gdańsk University of Technology

seen 83 times

Recommended for you

Meta Tags