Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation
Abstract
Recently, carbon-related materials have been proposed to improve the charge separation of the photogenerated carriers in the semiconductor matrices’ and surface properties. Carbon-related materials may act as co-catalysts, enhancing the pollutants adsorption on the surface, improving the charge carriers separation and photocatalyst stability and providing more active centres for photocatalytic reactions. This review summarizes recent advances in the preparation and environmental application of carbon-related materials. The focus was set on preparation of carbon-related materials and magnetic carbon-related photocatalytic materials with the property of easy separation after the purification process in an external magnetic field and their application for degradation of emerging pollutants not susceptible to biodegradation. The present studies identify four main groups of water pollutants: pesticides, pharmaceuticals, industrial chemicals, and heavy metals. Among them, pharmaceuticals and phenolic compounds represent a significant group of persistent organic pollutants. Some of the commonly used pharmaceuticals for human health, as well as disinfectants, are found in wastewater influents and effluents (after the puri- fication process) almost in the unchanged form. Their detection in trace amounts (of about a few micrograms to hundreds of nanograms per litre) and removal become difficult but important because they put at risk the reuse of treated wastewater and the sustainability of water cycle management. Concerning levels of concentrations, these compounds are classified as hazardous due to possibilities of bioaccumulation, biomagnification and toxic impact on living organisms, even in trace amounts. Up to now, various methods have been reported in the removal of pharmaceuticals and phenolic compounds from aqueous systems. This review provides coherent information for future studies in the application of carbon-related materials and magnetic carbon-related materials for the removal of active pharmaceutical ingredients and phenolic compounds. Insights on pharmaceutical and phenolic compounds photodegradation in the presence of carbon-based materials. The effect of various parameters such as water matrice, pH, natural organic matter presence, and temperature were also discussed. Finally, the economic feasibility and consideration of photocatalyst recovery capability completed the concept and discussion on magnetic carbon-related materials.
Citations
-
5
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wri.2024.100241
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Water Resources and Industry
no. 31,
ISSN: 2212-3717 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Çako E., Gunasekaran K. D., Rajendran S., Zielińska-Jurek A.: Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation// Water Resources and Industry -, (2024), s.100241-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wri.2024.100241
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 95 times
Recommended for you
Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis
- Z. Bielan,
- S. Dudziak,
- A. Kubiak
- + 1 authors
Polymer and graphitic carbon nitride based nanohybrids for the photocatalytic degradation of pharmaceuticals in wastewater treatment – A review
- M. Rohan Khizer,
- Z. Saddique,
- M. Imran
- + 5 authors
Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants
- M. Bilal,
- A. Kumar Singh,
- H. M. Iqbal
- + 3 authors
Modern trends in solid phase extraction: New sorbent media
- J. Płotka-Wasylka,
- N. Jatkowska,
- M. d. l. Guardia
- + 1 authors