Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran - Publication - Bridge of Knowledge

Search

Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran

Abstract

Application of lignocellulosic fillers in the manufacturing of wood polymer composites (WPCs) is a very popular trend of research, however it is still rarely observed in the case of rotational molding. The present study aimed to analyze the impact of wheat bran content (from 2.5 wt.% to 20 wt.%) on the performance of rotationally-molded composites based on a linear low-density polyethylene (LLDPE) matrix. Microscopic structure (scanning electron microscopy), as well as physico-mechanical (density, porosity, tensile performance, hardness, rebound resilience, dynamic mechanical analysis), rheological (oscillatory rheometry) and thermo-mechanical (Vicat softening temperature) properties of composites were investigated. Incorporation of 2.5 wt.% and 5 wt.% of wheat bran did not cause significant deterioration of the mechanical performance of the material, despite the presence of ‘pin-holes’ at the surface. Values of tensile strength and rebound resilience were maintained at a very similar level, while hardness was slightly decreased, which was associated with the porosity of the structure. Higher loadings resulted in the deterioration of mechanical performance, which was also expressed by the noticeable rise of the adhesion factor. For lower loadings of filler did not affect the rheological properties. However, composites with 10wt.% and 20 wt.% also showed behavior suitable for rotational molding. The presented results indicate that the manufacturing of thin-walled products based on wood polymer composites via rotational molding should be considered a very interesting direction of research.

Citations

  • 4 6

    CrossRef

  • 0

    Web of Science

  • 4 4

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 115 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Polymers no. 12,
ISSN: 2073-4360
Language:
English
Publication year:
2020
Bibliographic description:
Hejna A., Barczewski M., Andrzejewski J., Kosmela P., Piasecki A., Szostak M., Kuang T.: Rotational Molding of Linear Low-Density Polyethylene Composites Filled with Wheat Bran// Polymers -Vol. 12,iss. 5 (2020), s.1004-
DOI:
Digital Object Identifier (open in new tab) 10.3390/polym12051004
Bibliography: test
  1. Crawford, R.J.; Throne, J.L. Rotational Molding Technology; Plastics Design Library William Andrew Publishing: Norwich, UK; New York, NY, USA, 2001. open in new tab
  2. Oliveira, M.J.; Cramez, M.C. Rotational molding of polyolefins: Processing, morphology, and properties. J. Macromol. Sci. B 2001, 40, 457-471. doi:10.1081/MB-100106170. open in new tab
  3. Ogila, K.; Shao, M.; Yang, W.; Tan, J. Rotational molding: A review of the models and materials. eXPRESS Polym. Lett. 2017, 11, 778-798. doi:10.3144/expresspolymlett.2017.75. open in new tab
  4. Qin, L.; Ding, Y.M.; Jiao, Z.W.; Liu, Y.X.; Yang, W.M. The Research on the Heating Time of Rotational Molding. Key Eng. Mater. 2013, 561, 285-290. doi:10.4028/www.scientific.net/kem.561.285. open in new tab
  5. Qin, L.; Ding, Y.M.; Zhu, G.C.; Yu, H.C.; Yang, W.M. Heat Flow Analysis and Efficiency Optimization of Rotational Molding Equipment for Large Plastic Products. Int. Polym. Proc. 2015, 30, 194-201. doi:10.3139/217.2926. open in new tab
  6. Ramkumar, P.L.; Ramesh, A.; Alvenkar, P.P.; Patel, N. Prediction of heating cycle time in Rotational Moulding. Mater. Today Proc. 2015, 2, 3212-3219. doi:10.1016/j.matpr.2015.07.116. open in new tab
  7. Vignali, A.; Iannace, S.; Falcone, G.; Utzeri, R.; Stagnaro, P.; Bertini, F. Lightweight Poly(ε-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties. Polymers 2019, 11, 624. doi:10.3390/polym11040624. open in new tab
  8. Robledo-Ortíz, J.R.; González-López, M.E.; Rodrigue, D.; Gutiérrez-Ruiz, J.F.; Prezas-Lara, F.; Pérez- Fonseca, A.A. Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. J. Polym. Environ. 2020, 28, 1040-1049. doi:10.1007/s10924-020-01667-1. open in new tab
  9. Ortega, Z.; Monzón, M.D.; Benítez, A.N.; Kearns, M.; McCourt, M.; Hornsby, P.R. Banana and Abaca Fiber- Reinforced Plastic Composites Obtained by Rotational Molding Process. Mater. Manuf. Process. 2013, 28, 879-883. doi:10.1080/10426914.2013.792431. open in new tab
  10. Hanana, F.E.; Desire, C.Y.; Rodrigue, D. Morphology and Mechanical Properties of Maple Reinforced LLDPE Produced by Rotational Moulding: Effect of Fibre Content and Surface Treatment. Polym. Polym. Compos. 2018, 26, 299-307. doi:10.1177/096739111802600404. open in new tab
  11. Ramkumar, P.L.; Kulkarni, D.M.; Chaudhari, V.V. Parametric and mechanical characterization of linear low density polyethylene (LLDPE) using rotational moulding technology. Sādhanā 2014, 39, 625-635. doi:10.1007/s12046-013-0223-4. open in new tab
  12. Matykiewicz, D.; Barczewski, B.; Mysiukiewicz, O.; Skórczewska, K. Comparison of Various Chemical Treatments Efficiency in Relation to the Properties of Flax, Hemp Fibers and Cotton trichomes. J. Nat. Fibers 2019. doi:10.1080/15440478.2019.1645792. open in new tab
  13. Barczewski, M.; Szostak, M.; Nowak, D.; Piasecki, A. Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery 2018, 63, 772-784. doi:10.14314/polimery.2018.11.5. open in new tab
  14. Hanana, F.E.; Rodrigue, D. Rotational Molded Maple/Hemp Fiber-Reinforced LLDPE Hybrid Composites: Morphological and Mechanical Properties. Curr. Appl. Polym. Sci. 2018, 2, 27-36. doi:10.2174/2452271602666171207150324. open in new tab
  15. Wu, C.S. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polym. Degrad. Stabil. 2015, 121, 51-59. doi:10.1016/j.polymdegradstab.2015.08.011. open in new tab
  16. Andrzejewski, J.; Barczewski, M.; Szostak, M. Injection Molding of Highly Filled Polypropylene-based Biocomposites. Buckwheat Husk and Wood Flour Filler: A Comparison of Agricultural and Wood Industry Waste Utilization. Polymers 2019, 11, 1881. doi:10.3390/polym11111881. open in new tab
  17. Li, M.C.; Zhang, Y.; Cho, U.R. Mechanical, thermal and friction properties of rice bran carbon/nitrile rubber composites: Influence of particle size and loading. Mater. Des. 2014, 63, 565-574. doi:10.1016/j.matdes.2014.06.032. open in new tab
  18. Vázquez Fletes, R.C.; Cisneros López, E.O.; Moscoso Sánchez, F.J.; Mendizábal, E.; González Núñez, R.; Rodrigue, D.; Ortega Gudiño, P. Morphological and Mechanical Properties of Bilayers Wood-Plastic Composites and Foams Obtained by Rotational Molding. Polymers 2020, 12, 503. doi:10.3390/polym12030503. open in new tab
  19. Wysocki, J. Sposób Wytwarzania Biodegradowalnych Kształtek Naczyń i Opakowań z Otrąb, Zwłaszcza Pszennych. Patent PL 195129 B1, 31.08.2007.
  20. Wysocki, J. Materiał do Wytwarzania Biodegradowalnych Kształtek, Zwłaszcza Naczyń i Opakowań Oraz Sposób Wytwarzania Biodegradowalnych Kształtek, Zwłaszcza Naczyń i Opakowań. Patent PL 195130 B1, 31.08.2007.
  21. Wysocki, J. Material for Making Biodegradable Mouldings from Bran and Method Thereof. Patent WO2001039612A1, 7 June 2001. open in new tab
  22. Rahman, A.; Ulven, C.A.; Durant, C.; Johnson, M.A.; Fehrenbach, J.; Hossain, K.G. Selection, pretreatment, and use of wheat bran for making thermoplastic composite. In Proceedings of the 2017 ASABE Annual International Meeting, Spokane, WA, USA, 16-19 July 2017. doi:10.13031/aim.201701090. open in new tab
  23. Majewski, Ł.; Gaspar Cunha, A. Evaluation of suitability of wheat bran as a natural filler in polymer processing. Bioresources 2018, 13, 7037-7052.
  24. Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509-2518. doi:10.1111/ijfs.12935. open in new tab
  25. Selmin, F.; Franceschini, I.; Cupone, I.E.; Minghetti, P.; Cilurzo, F. Aminoacids as non-traditional plasticizers of maltodextrins fast-dissolving films. Carbohydr. Polym. 2015, 115, 613-616. doi:10.1016/j.carbpol.2014.09.023. open in new tab
  26. Hejna, A.; Formela, K.; Saeb, M.R. Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites. Ind. Crop. Prod. 2015, 76, 725-733. doi:10.1016/j.indcrop.2015.07.049. open in new tab
  27. Hejna, A.; Sulyman, M.; Przybysz, M.; Saeb, M.R.; Klein, M.; Formela, K. On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(ε-Caprolactone) Based Biocomposites. Waste Biomass Valorization 2020, 11, 1467-1479. doi:10.1007/s12649-018-0485-5. open in new tab
  28. Formela, K.; Hejna, A.; Piszczyk, Ł.; Saeb, M.R.; Colom, X. Processing and structure-property relationships of natural rubber/wheat bran biocomposites. Cellulose 2016, 23, 3157-3175. doi:10.1007/s10570-016-1020-0. open in new tab
  29. Hejna, A.; Formela, K. Sposób Suszenia i Rozdrabniania Młóta Browarnianego. Polish Patent Application P.430449, 02.07.2019.
  30. Caprez, A.; Arrigoni, E.V.A.; Amado, R.; Neukom, H. Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J. Cereal Sci. 1986, 4, 233-239. doi:10.1016/S0733-5210(86)80025-X. open in new tab
  31. Höfler, G.; Lin, R.J.T.; Jayaraman, K. Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. J. Polym. Res. 2018, 25, 132. doi:10.1007/s10965-018-1525-3. open in new tab
  32. Özer, A.; Dursun, G. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. J. Hazard. Mater. 2007, 146, 262-269. doi:10.1016/j.jhazmat.2006.12.016. open in new tab
  33. Ghozali, M.; Triwulandari, E.; Haryono, A.; Yuanita, E. Effect of lignin on morphology, biodegradability, mechanical and thermal properties of low linear density polyethylene/lignin biocomposites. IOP Conf. Ser. Mat. Sci. 2017, 223, 012022. doi:10.1088/1757-899x/223/1/012022. open in new tab
  34. Mysiukiewicz, O.; Kosmela, P.; Barczewski, M.; Hejna, A. Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder. Materials 2020, 13, 1242. doi:10.3390/ma13051242. open in new tab
  35. Spence, A.G.; Crawford, R.J. The effect of processing variables on the formation and removal of bubbles in rotationally molded products. Polym. Eng. Sci. 1996, 36, 993-1009. doi:10.1002/pen.10487. open in new tab
  36. Cisneros-López, E.O.; Pérez-Fonseca, A.A.; González-García, Y.; Ramírez-Arreola, D.E.; González-Núñez, R.; Rodrigue, D.; Robledo-Ortíz, J.R. Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Adv. Polym. Technol. 2018, 37, 2528-2540. doi:10.1002/adv.21928. open in new tab
  37. Kubát, J.; Rigdahl, M.; Welander, M. Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. J. Appl. Polym. Sci. 1990, 39, 1527-1539. doi:10.1002/app.1990.070390711. open in new tab
  38. Khanna, Y.P.; Turi, E.A.; Taylor, T.J.; Vickroy, V.V.; Abbott, R.F. Dynamic mechanical relaxations in polyethylene. Macromolecules 1985, 18, 1302-1309. doi:10.1021/ma00148a045. open in new tab
  39. Popli, R.; Glotin, M.; Mandelkern, L.; Benson, R.S. Dynamic mechanical studies of α and β relaxations of polyethylenes. J. Polym. Sci. Pol. Phys. 1984, 22, 407-448. doi:10.1002/pol.1984.180220306. open in new tab
  40. Wang, K.; Dong, Y.; Yan, Y.; Zhang, W.; Qi, C.; Han, C.; Li, J.; Zhang, S. Highly hydrophobic and self- cleaning bulk wood prepared by grafting long-chain alkyl onto wood cell walls. Wood Sci. Technol. 2017, 51, 395-411. doi:10.1007/s00226-016-0862-9. open in new tab
  41. Correa, C.A.; Razzino, C.A.; Hage, E. Role of maleated coupling agents on the interface adhesion of polypropylene-wood composites. J. Thermoplast. Compos. 2007, 20, 323-338. doi:10.1177/0892705707078896. open in new tab
  42. Bindu, P.; Thomas, S. Viscoelastic Behavior and Reinforcement Mechanism in Rubber Nanocomposites in the Vicinity of Spherical Nanoparticles. J. Phys. Chem. B 2013, 117, 12632-12648. doi:10.1021/jp4039489. open in new tab
  43. Pasha, I.; Anjum, F.M.; Morris, C.F. Grain Hardness: A Major Determinant of Wheat Quality. Food Sci. Technol. Int. 2010, 16, 511-522. doi:10.1177/1082013210379691. open in new tab
  44. Chaudhary, B.I.; Takacs, E.; Vlachopoulos, J. Processing enhancers for rotational molding of polyethylene. Polym. Eng. Sci. 2001, 41, 1731-1742. doi:10.1002/pen.10870. open in new tab
  45. Marcovich, N.E.; Reboredo, M.M.; Kenny, J.; Aranguren, M.I. Rheology of particle suspensions in viscoelastic media. Wood flour-polypropylene melt. Rheol. Acta 2004, 43, 293-303. doi:10.1007/s00397-003- 0349-0. open in new tab
  46. Osman, M.A.; Atallah, A. Interparticle and particle-matrix interactions in polyethylene reinforcement and viscoelasticity. Polymer 2005, 46, 9476-9488. doi:10.1016/j.polymer.2005.07.030. open in new tab
  47. Wang, Y.; Wang, J.J. Shear yield behavior of calcium carbonate-filled polypropylene. Polym. Eng. Sci. 1999, 39, 190-198. doi:10.1002/pen.11407. open in new tab
  48. Li, J.; Zhou, C.; Wang, G.; Zhao, D. Study on rheological behavior of polypropylene/clay nanocomposites. J. Appl. Polym. Sci. 2003, 89, 3609-3617. doi:10.1002/app.12643. open in new tab
  49. Barczewski, M.; Mysiukiewicz, O. Rheological and processing properties of poly(lactic acid) composites filled with ground chestnut shell. Polym. Korea 2018, 42, 267-274. doi:10.7317/pk.2018.42.2.267. open in new tab
  50. Le Moigne, N.; van den Oever, M.; Budtova, T. Dynamic and capillary shear rheology of natural fiber- reinforced composites. Polym. Eng. Sci. 2013, 53, 2582-2593. doi:10.1002/pen.23521. open in new tab
  51. Subramanian, M.N. Basics of Troubleshooting in Plastics Processing: An Introductory Practical Guide; Wiley- Scrivener: Beverly, MA, USA, 2011. open in new tab
  52. Vlachopoulos, J.; Kontopoulou, M.; Takacs, E.; Graham, B. Polymer rheology and its role in rotational molding. Rotation 1999, 8, 22-30.
  53. Jam, N.J.; Behravesh, A.H. Flow behavior of HDPE-fine wood particles composites. J. Thermoplast. Compos. 2007, 20, 439-451. doi:10.1177/0892705707082324. open in new tab
  54. Kloziński, A.; Barczewski, M. Comparison of off -line, on-line and in-line measuring techniques used for determining the rheological characteristics of polyethylene composites with calcium carbonate. Polimery 2019, 64, 83-92. doi:10.14314/polimery.2019.2.1. open in new tab
  55. Bútora, P.; Náplava, A.; Ridzoň, M.; Bílik, J.; Tittel, V. Particle Filled Polyethylene Composites Used in the Technology of Rotational Moulding. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2011, 19, 9-18. doi:10.2478/v10186-011-0051-5. open in new tab
  56. Głogowska, K.; Majewski, Ł.; Gajdoš, I.; Mital, G. Assessment of the Resistance to External Factors of Low- Density Polyethylene Modified with Natural Fillers. Adv. Sci. Technol. Res. J. 2017, 11, 35-40. doi:10.12913/22998624/75984. open in new tab
  57. Szostak, M.; Tomaszewska, N.; Kozlowski, R. Mechanical and Thermal Properties of Rotational Molded PE/Flax and PE/Hemp Composites. In Advances in Manufacturing II; open in new tab
  58. Gapinski, B., Szostak, M., Ivanow, V., Eds.; Springer: Cham, Switzerland, 2019; Volume 4, pp. 495-506. doi:10.1007/978-3-030-16943-5_42. open in new tab
  59. Baumer, M.I.; Leite, J.L.; Becker, D. Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding. Mater. Res. 2014, 17, 130-137. doi:10.1590/S1516-14392013005000159. . open in new tab
Verified by:
Gdańsk University of Technology

seen 76 times

Recommended for you

Meta Tags