Selected studies of flow maldistribution in a minichannel plate heat exchanger - Publication - Bridge of Knowledge

Search

Selected studies of flow maldistribution in a minichannel plate heat exchanger

Abstract

Analysis of the state of-the-art in research of minichannel heat exchangers, especially on the topic of flow maldistribution in multiple channels, has been accomplished. Studies on minichannel plate heat exchanger with 51 parallel minichannels with four hydraulic diameters, i.e., 461 μm, 574 μm, 667 μm, and 750 μm have been presented. Flow at the instance of filling the microchannel with water at low flow rates has been visualized. The pressure drop characteristics for single minichannel plate have been presented along with the channels blockage, which occurred in several cases. The impact of the mass flow rate and channels’ cross-section dimensions on the flow maldistribution were illustrated.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Cite as

Full text

download paper
downloaded 117 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Archives of Thermodynamics no. 38, pages 135 - 148,
ISSN: 1231-0956
Language:
English
Publication year:
2017
Bibliographic description:
Dąbrowski P., Klugmann M., Mikielewicz D.: Selected studies of flow maldistribution in a minichannel plate heat exchanger// Archives of Thermodynamics. -Vol. 38., nr. 3 (2017), s.135-148
DOI:
Digital Object Identifier (open in new tab) 10.1515/aoter-2017-0020
Bibliography: test
  1. Tuckerman D.B.: Pease RFW High-performance heat sinking for VLSI. IEEE Electr. Device Lett 2(1981), 5, 126-129. DOI: 10.1109/EDL.1981.253672. open in new tab
  2. Teng J.: Fluid Dynamics in Microchannels. Intechopen 2012, 403-436. DOI: 10.1002/97835276314453. open in new tab
  3. Mehendale S.S., Jacobi A.M., Shah R.K.: Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 53(2000), 7, 175-193. open in new tab
  4. Kandlikar S.G., Grande W.J.: Evolution of microchannel flow passages- thermohydraulic performance and fabrication technology. Heat Tran. Eng. 24(2003), 1, 3-17. DOI: 10.1080/014576303040405. open in new tab
  5. Ornatskii A.P., Vinyarskii L.S.: Heat transfer crisis in a forced flow of under- heated water in small-bore tubes. Teplofiz. Vysok. Temp. 3(1965), 441-451.
  6. Mudawar I.A., El-Masri M.A. Wu C.S., Ausman-Mudawwar J.R.: Boiling heat transfer and critical heat flux in high-speed rotating liquid films. Int. J. Heat Mass Tran. 28(1985), 4, 795-806. DOI: 10.1016/0017-9310(85)90230-3 open in new tab
  7. Sturgis J.C., Mudawar I.: Assessment of CHF enhancement mechanisms in a curved, rectangular channel subjected to concave heating. J. Heat Transfer 121(1999), 2, 394-404. open in new tab
  8. Hall D.D., Mudawar I.: Ultra-high critical heat flux (CHF) for subcooled water flow boiling? II: high-CHF database and design equations. Int. J. Heat Mass Transf. 42(1999), 8, 1429-1456. DOI: 10.1016/S0017-9310(98)00242-7 open in new tab
  9. Mikielewicz D., Mikielewicz J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(2010), 16, 2357-2362. DOI: 10.1016/j.applthermaleng.2010.05.035. open in new tab
  10. Mudawar I: Assessment of high-heat-flux thermal management schemes. IEEE Trans. Comp. Pack. Technol. 24(2001), 2, 122-141. DOI: 10.1109/6144.926375. open in new tab
  11. Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limita- tions. J. Electron Packag. 133(2011), 4, 41002-41031. open in new tab
  12. Jimenez P.E., Mudawar I.: A multi-kilowatt immersion-cooled standard electronic clamshell module for future aircraft avionics. J Electron Packag. 116(1994), 3, 220- 229. open in new tab
  13. LaClair T.J., Mudawar I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Tran. 43(2000), 21, 3937-3952. DOI: 10.1016/S0017-9310(00)00042-9 open in new tab
  14. Reddy S.R., Ebadian M.A., Lin C-X.: A review of PVT systems: thermal man- agement and efficiency with single phase cooling. Int. J. Heat Mass Tran. 91(2015), 861-871. DOI: 10.1016/j.ijheatmasstransfer.2015.07.134. open in new tab
  15. Mudawar I., Bharathan D., Kelly K., Narumanchi S.: Two-phase spray cooling of hybrid vehicle electronics. IEEE Trans. Components Packag. Technol. 32(2009), 2, 501-512. DOI: 10.1109/TCAPT.2008.2006907. open in new tab
  16. JY R., LY L., XS D. et al.: Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity. Energy Convers Manag 97(2015), 188-195. DOI: 10.1016/j.enconman.2015.03.058. open in new tab
  17. Berthier J., Brakke K.A., Furlani E.P. et al: Whole blood spontaneous capil- lary flow in narrow V-groove microchannels. Sensors Actuators, B Chem 206(2015), 258-267. DOI: 10.1016/j.snb.2014.09.040. open in new tab
  18. Kim S.M., Mudawar I.: Review of databases and predictive methods for heat trans- fer in condensing and boiling mini/micro-channel flows. Int. J. Heat Mass Tran. 77(2014), 627-652. DOI: 10.1016/j.ijheatmasstransfer.2014.05.036. open in new tab
  19. Kandlikar S.G.: High flux heat removal with microchannels -A roadmap of challenges and opportunities. Heat Transfer Eng. 26(2005), 8, 5-14. DOI: 10.1080/01457630591003655. open in new tab
  20. Mueller A.C., Chiou J.P.: Review of various types of flow maldistribution in heat exchangers. Heat Tranfer Eng. 9(1988),36-50. DOI: 10.1080/01457638808939664. open in new tab
  21. Wen J., Li Y.: Study of flow distribution and its improvement on the header of plate-fin heat exchanger. Cryogenics (Guildf) 44(2004), 11, 823-831. DOI: 10.1016/j.cryogenics.2004.04.009. open in new tab
  22. Wang J.: Theory of flow distribution in manifolds. Chem. Eng. J. 168(2011), 3, 1331-1345. DOI: 10.1016/j.cej.2011.02.050. open in new tab
  23. Amador C., Gavriilidis A., Angeli P.: Flow distribution in different microre- actor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem. Eng. J. 101(2004), 1-3, 379-390. DOI: 10.1016/j.cej.2003.11.031. open in new tab
  24. Bejan A., Errera M.R.: Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point. Fractals 5(1997), 4, 685-695. DOI: 10.1142/S0218348X97000553. open in new tab
  25. Ramos-Alvarado B., Li P., Liu H., Hernandez-Guerrero A.: CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells. Appl. Therm. Eng. 31(2011), 14-15, 2494- 2507. DOI: 10.1016/j.applthermaleng.2011.04.015. open in new tab
  26. Bassiouny M.K., Martin H.: Flow distribution and pressure drop in plate heat exchangers-I U-type arrangement. Chem. Eng. Sci. 39(1984), 4, 693-700. DOI: 10.1016/0009-2509(84)80176-1. open in new tab
  27. Bassiouny M.K., Martin H.: Flow distribution and pressure drop in plate heat exchangers-II Z-type arrangement. Chem. Eng. Sci. 39(1984), 4, 701-704. DOI: 10.1016/0009-2509(84)80177-3. open in new tab
  28. Bajura R.A.: A model for flow distribution in manifolds. J. Eng. Power 93(1971), 1, 7-12. open in new tab
  29. Acrivos A., Babcock B.D., Pigford R.L.: Flow distributions in manifolds. Chem. Eng. Sci. 10(1959), 1-2, 112-124. DOI: 10.1016/0009-2509(59)80030-0. open in new tab
  30. Wang J., Gao Z., Gan G., Wu D.: Analytical solution of flow coefficients for a uniformly distributed porous channel. Chem. Eng. J. 84(2001), 1, 1-6. DOI: 10.1016/S1385-8947(00)00263-1. open in new tab
  31. Tuo H., Hrnjak P.: Effect of the header pressure drop induced flow maldistribution on the microchannel evaporator performance. Int. J. Refrig. 36(2013), 8, 2176-2186. DOI: 10.1016/j.ijrefrig.2013.06.002. open in new tab
  32. Huang L., Lee M.S., Saleh K. et al.: A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow mal-distribution analysis in microchannel heat exchanger headers. Appl. Therm. Eng. 65(2014), 1-2, 447- 457. DOI: 10.1016/j.applthermaleng.2014.01.046. open in new tab
  33. Zhang Z., Li Y.: CFD simulation on inlet configuration of plate-fin heat exchang- ers. Cryogenics (Guildf) 43(2003), 12, 673-678. DOI: 10.1016/S0011-2275(03)00179- 6. open in new tab
  34. Nielsen K.K., Engelbrecht K., Christensen D.V. et al.: Degradation of the performance of microchannel heat exchangers due to flow maldistribution. Appl. Therm. Eng. 40(2012), 236-247. DOI: 10.1016/j.applthermaleng.2012.02.019. open in new tab
  35. Lalot S., Florent P., Lang S.K., Bergles A.E.: Flow maldistribution in heat exchangers. Appl. Therm. Eng. 19(1999), 8, 847-863. DOI: 10.1016/S1359- 4311(98)00090-8. open in new tab
  36. Minqiang P., Dehuai Z., Yong T., Dongqing C.: CFD-based study of velocity distribution among multiple parallel microchannels. J. Comput. 4(2009), 11, 1133- 1138. DOI: 10.4304/jcp.4.11.1133-1138. open in new tab
  37. Kumaraguruparan G., Kumaran R.M., Sornakumar T., Sundararajan T.: A numerical and experimental investigation of flow maldistribution in a micro- channel heat sink. Int. Commun. Heat Mass Tran. 38(2011), 10, 1349-1353. DOI: 10.1016/j.icheatmasstransfer.2011.08.020. open in new tab
  38. Manoj Siva V., Pattamatta A., Das S.K.: Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems. Int. J. Heat Mass Tran. 73(2014), 424-428. DOI: 10.1016/j.ijheatmasstransfer.2014.02.017. open in new tab
  39. Anbumeenakshi C., Thansekhar M.R.: Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel. Exp. Therm. Fluid Sci. 75(2016), 156-161. DOI: 10.1016/j.expthermflusci.2016.02.004. open in new tab
  40. Mikielewicz D., Klugmann M.: A study of flow boiling heat transfer in minichan- nels. Arch Thermodyn. 29(2008), 2, 73-84. open in new tab
  41. Mikielewicz D., Klugmann M., Wajs J.: Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts. Int. J. Therm. Sci. 65(2013), 79-91. DOI: 10.1016/j.ijthermalsci.2012.10.002. open in new tab
  42. Mikielewicz D., Wajs J., Andrzejczyk R., Klugmann M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int J. Refrig. 68(2016), 226-241. DOI: 10.1016/j.ijrefrig.2016.03.005. open in new tab
Verified by:
Gdańsk University of Technology

seen 131 times

Recommended for you

Meta Tags