Sensor Position Estimation Method for IoT Using Mobile Reference Node - Publication - Bridge of Knowledge

Search

Sensor Position Estimation Method for IoT Using Mobile Reference Node

Abstract

The paper proposes an innovative method of locating objects for the Internet of Things (IoT). The proposed method allows the position of a fixed measuring sensor (MS) to be estimated using one mobile base station with a known position moving around the MS. The mathematical analysis of the method, and three algorithms — Newton’s (NA), gradient descent (GD) and genetic (GA) — for solving the system of non-linear positional equations are presented. Next, the analysis of the position dilution of precision (PDoP) parameter for the proposed method, and the Cramér-Rao lower bound (CRLB), limiting the accuracy of the method, are presented. Finally, the results of complex simulation studies on the efficiency of the proposed method for various selected system parameters of the sensor network and convergence of the algorithms used to solve the system of non-linear equations are described.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 52 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 79287 - 79298,
ISSN: 2169-3536
Language:
English
Publication year:
2020
Bibliographic description:
Stefański J., Sadowski J.: Sensor Position Estimation Method for IoT Using Mobile Reference Node// IEEE Access -Vol. 8, (2020), s.79287-79298
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2020.2990385
Bibliography: test
  1. J. D. Bard and F. M. Ham, ''Time difference of arrival dilution of pre- cision and applications,'' IEEE Trans. Signal Process., vol. 47, no. 2, pp. 521-523, Feb. 1999, doi: 10.1109/78.740135. open in new tab
  2. C. Chang and A. Sahai, ''Cramér-Rao-type bounds for localization,'' EURASIP J. Adv. Signal Process., vol. 2006, Dec. 2006, Art. no. 094287, doi: 10.1155/ASP/2006/94287. open in new tab
  3. Z. Chen, F. Xia, T. Huang, F. Bu, and H. Wang, ''A localization method for the Internet of Things,'' J. Supercomput., vol. 63, no. 3, pp. 657-674, Mar. 2013, doi: 10.1007/s11227-011-0693-2. open in new tab
  4. Universal Mobile Telecommunications System (UMTS); Evaluation of the Inclusion of Path Loss Based Location Technology in the UTRAN, ETSI TR 125 907 ver. 9.0.1, Eur. Telecommun. Standards Inst., Sophia Antipolis, France, Feb. 2010. open in new tab
  5. D. E. Fasshauer, Meshfree Approximation Methods with MATLAB. Singa- pore: World Scientific Publishing, 2007. open in new tab
  6. J. Figueiras and S. Frattasi, Mobile Positioning and Tracking: From Con- ventional to Cooperative Techniques. London, U.K.: Wiley, 2010. open in new tab
  7. R. Fletcher and M. J. D. Powell, ''A rapidly convergent descent method for minimization,'' Comput. J., vol. 6, no. 2, pp. 163-168, Aug. 1963, doi: 10.1093/comjnl/6.2.163. open in new tab
  8. W. Foy, ''Position-location solutions by Taylor-series estimation,'' IEEE Trans. Aerosp. Electron. Syst., vols. AES-12, no. 2, pp. 187-194, Mar. 1976, doi: 10.1109/TAES.1976.308294. open in new tab
  9. R. F. Hartl, ''A global convergence proof for a class of genetic algorithms,'' Inst. Manage., Univ. Vienna, Tech. Rep., Vienna, Austria, Jan. 1990, pp. 1-6. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.330.1662 open in new tab
  10. C. L. Karr, B. Weck, and L. M. Freeman, ''Solutions to systems of non- linear equations via a genetic algorithm,'' Eng. Appl. Artif. Intell., vol. 11, no. 3, pp. 369-375, Jun. 1998, doi: 10.1016/S0952-1976(97)00067-5. open in new tab
  11. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.
  12. P. Lea, Internet of Things for Architects. Birmingham, U.K.: Packt Pub- lishing, 2018.
  13. X. Lin, J. Bergman, F. Gunnarsson, O. Liberg, S. M. Razavi, H. S. Razaghi, H. Rydn, and Y. Sui, ''Positioning for the Internet of Things: A 3GPP per- spective,'' IEEE Commun. Mag., vol. 55, no. 12, pp. 179-185, Dec. 2017, doi: 10.1109/MCOM.2017.1700269. open in new tab
  14. Y. Liu and Z. Yang, Localizability: Location-awareness Technology for Wireless Networks. New York, NY, USA: Springer, 2011. open in new tab
  15. R. N. McDonough and A. D. Whalen, Detection of Signals in Noise, 2nd ed. San Diego, CA, USA: Academic, 1995.
  16. M. Miszewski, J. Sadowski, and J. Stefanski, ''A method of transmitting information for the Internet of Things (IoT), especially outside the area of radio communications networks,'' Patent Appl. 432 108, Dec. 6, 2019.
  17. I. Nevat, G. W. Peters, K. Avnit, F. Septier, and L. Clavier, ''Location of things: Geospatial tagging for IoT using Time-of-Arrival,'' IEEE Trans. Signal Inf. Process. over Netw., vol. 2, no. 2, pp. 174-185, Jun. 2016, doi: 10.1109/TSIPN.2016.2531422. open in new tab
  18. K. Radnosrati, G. Hendeby, C. Fritsche, F. Gunnarsson, and F. Gustafsson, ''Performance of OTDOA positioning in narrowband IoT systems,'' in Proc. IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Oct. 2017, pp. 1-7, doi: 10.1109/PIMRC.2017.8292365. open in new tab
  19. J. Sadowski and J. Stefanski, ''Asynchronous phase-location sys- tem,'' J. Mar. Eng. Technol., vol. 16, no. 4, pp. 400-408, Feb. 2017, doi: 10.1080/20464177.2017.1376372. open in new tab
  20. J. Sadowski and J. Stefanski, ''Asynchronous WAM with irregular pulse repetition,'' J. Navigat., vol. 72, no. 1, pp. 85-100, Jan. 2019, doi: 10.1017/S0373463318000607. open in new tab
  21. D.-H. Shin and T.-K. Sung, ''Comparisons of error characteristics between TOA and TDOA positioning,'' IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 1, pp. 307-311, Jan. 2002, doi: 10.1109/7.993253. open in new tab
  22. R. C. Shit, S. Sharma, D. Puthal, and A. Y. Zomaya, ''Location of things (LoT): A review and taxonomy of sensors localization in IoT infras- tructure,'' IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2028-2061, 3rd Quart., 2018, doi: 10.1109/COMST.2018.2798591. open in new tab
  23. P. Silva, V. Kaseva, and E. Lohan, ''Wireless positioning in IoT: A look at current and future trends,'' Sensors, vol. 18, no. 8, p. 2470, Jul. 2018, doi: 10.3390/s18082470. open in new tab
  24. J. Stefanski, ''Asynchronous time difference of arrival (ATDOA) method,'' Pervas. Mobile Comput., vol. 23, pp. 80-88, Oct. 2015, doi: 10.1016/j.pmcj.2014.10.008. open in new tab
  25. J. Stefanski and J. Sadowski, ''TDOA versus ATDOA for wide area multi- lateration system,'' EURASIP J. Wireless Commun. Netw., vol. 2018, no. 1, pp. 1-13, Dec. 2018, doi: 10.1186/s13638-018-1191-5. open in new tab
  26. J. B. Y. Tsui, Fundamentals of Global Positioning System Receivers: A Software Approach. New York, NY, USA: Wiley, 2000. open in new tab
  27. H. Yasuura, C. M. Kyung, Y. Liu, and Y. L. Lin, Smart Sensors at the IoT Frontier. Cham, Switzerland: Springer, 2017. open in new tab
  28. R. Tiwari, S. Bhattacharya, P. K. Purohit, and A. K. Gwal, ''Effect of TEC variation on GPS precise point at low latitude,'' Open Atmos. Sci. J., vol. 3, no. 1, pp. 1-12, Jan. 2009, doi: 10.2174/1874282300903010001. open in new tab
Verified by:
Gdańsk University of Technology

seen 82 times

Recommended for you

Meta Tags