Silica Gel Impregnated by Deep Eutectic Solvents for Adsorptive Removal of BTEX from Gas Streams - Publication - Bridge of Knowledge

Search

Silica Gel Impregnated by Deep Eutectic Solvents for Adsorptive Removal of BTEX from Gas Streams

Abstract

The paper presents the preparation of new adsorbents based on silica gel (SiO2) impregnated with deep eutectic solvents (DESs) to increase benzene, toluene, ethylbenzene, and p-xylene (BTEX) adsorption efficiency from gas streams. The DESs were synthesized by means of choline chloride, tetrapropylammonium bromide, levulinic acid, lactic acid, and phenol. The physico-chemical properties of new sorbent materials, including surface morphology and structures, as well as porosity, were studied by means of thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller analysis. The effect of DESs type, flow rate, and initial concentration of BTEX were also investigated followed by regeneration and reusability of adsorbents. The results indicate that SiO2 impregnated with tetrapropylammonium bromide and lactic acid in a 1:2 molar ratio have great potential for the removal of BTEX from gas streams. Its adsorption capacity was higher than the pure SiO2 and other developed SiO2-DES adsorbents. This result can be explained by the specific interaction between DESs and BTEX, i.e., hydrogen bonds interaction.

Citations

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Cite as

Full text

download paper
downloaded 107 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1894 - 1911,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Makoś P., Słupek E., Małachowska A.: Silica Gel Impregnated by Deep Eutectic Solvents for Adsorptive Removal of BTEX from Gas Streams// Materials -Vol. 13,iss. 8 (2020), s.1894-1911
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13081894
Bibliography: test
  1. Makoś, P.; Fernandes, A.; Boczkaj, G. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry. J. Sep. Sci. 2018, 41, 2360-2367. [CrossRef] [PubMed] open in new tab
  2. Słomińska, M.; Król, S.; Namieśnik, J. Removal of BTEX compounds from waste gases; Destruction and recovery techniques. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1417-1445. [CrossRef] open in new tab
  3. Darwish, N.A.; Al-Mehaideb, R.A.; Braek, A.M.; Hughes, R. Computer simulation of BTEX emission in natural gas dehydration using PR and RKS equations of state with different predictive mixing rules. Environ. Model. Softw. 2004, 19, 957-965. [CrossRef] open in new tab
  4. Arrhenius, K.; Yaghooby, H.; Rosell, L.; Büker, O.; Culleton, L.; Bartlett, S.; Murugan, A.; Brewer, P.; Li, J.; van der Veen, A.M.H.; et al. Suitability of vessels and adsorbents for the short-term storage of biogas/biomethane for the determination of impurities-Siloxanes, sulfur compounds, halogenated hydrocarbons, BTEX. Biomass Bioenergy 2017, 105, 127-135. [CrossRef] open in new tab
  5. Ncube, T.; Suresh Kumar Reddy, K.; Al Shoaibi, A.; Srinivasakannan, C. Benzene, Toluene, m-Xylene Adsorption on Silica-Based Adsorbents. Energy Fuels 2017, 31, 1882-1888. [CrossRef] open in new tab
  6. An, Y.J. Toxicity of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Mixtures to Sorghum bicolor and Cucumis sativus. Bull. Environ. Contam. Toxicol. 2004, 72, 1006-1011. [CrossRef] open in new tab
  7. Vohra, M.S. Adsorption-Based Removal of Gas-Phase Benzene Using Granular Activated Carbon (GAC) Produced from Date Palm Pits. Arab. J. Sci. Eng. 2015, 40, 3007-3017. [CrossRef] open in new tab
  8. Xu, L.; Li, Y.; Zhu, J.; Liu, Z. Removal of Toluene by Adsorption/Desorption Using Ultra-stable Y Zeolite. Trans. Tianjin Univ. 2019, 25, 312-321. [CrossRef] open in new tab
  9. Banaei, A.; Ebrahimi, S.; Vojoudi, H.; Karimi, S.; Badiei, A.; Pourbasheer, E. Adsorption equilibrium and thermodynamics of anionic reactive dyes from aqueous solutions by using a new modified silica gel with 2,2"-(pentane-1,5-diylbis(oxy))dibenzaldehyde. Chem. Eng. Res. Des. 2017, 123, 50-62. [CrossRef] open in new tab
  10. Prokopowicz, M.; Szewczyk, A.; Łunio, R.; Sawicki, W. Monolithic polydimethylsiloxane-modified silica composites prepared by a low-temperature sol-gel micromolding technique for controlled drug release. React. Funct. Polym. 2017, 114, 136-145. [CrossRef] open in new tab
  11. Banaei, A.; Samadi, S.; Karimi, S.; Vojoudi, H.; Pourbasheer, E.; Badiei, A. Synthesis of silica gel modified with 2,2 -(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of Reactive Yellow 84 and Reactive Blue 19 dyes from aqueous solutions: Equilibrium and thermodynamic studies. Powder Technol. 2017, 319, 60-70. [CrossRef] open in new tab
  12. Flieger, J.; Tatarczak-Michalewska, M.; Groszek, A.; Blicharska, E.; Kocjan, R. Adsorption kinetics at silica gel/ionic liquid solution interface. Molecules 2015, 20, 22058-22068. [CrossRef] [PubMed] open in new tab
  13. Raja Shahrom, M.S.; Nordin, A.R.; Wilfred, C.D. Activated Carbon Supported Amine Functionalized Ionic Liquids for CO 2 Sorption. J. Phys. Conf. Ser. 2018, 1123, 012069. [CrossRef] open in new tab
  14. Yusuf, N.Y.; Masdar, M.S.; Isahak, W.N.R.W.; Nordin, D.; Husaini, T.; Majlan, E.H.; Rejab, S.A.M.; Chew, C.L. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012071. [CrossRef] open in new tab
  15. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108-7146. [CrossRef] open in new tab
  16. Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride /Urea Mixtures. Chem. Commun. 2003, 1, 70-71. [CrossRef] [PubMed] open in new tab
  17. Makoś, P.; Słupek, E.; Gębicki, J. Hydrophobic deep eutectic solvents in microextraction techniques-A review. Microchem. J. 2020, 152, 104384. [CrossRef] open in new tab
  18. Makoś, P.; Przyjazny, A.; Boczkaj, G. Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr. A 2018, 1570, 28-37. [CrossRef] open in new tab
  19. Makoś, P.; Fernandes, A.; Przyjazny, A.; Boczkaj, G. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. J. Chromatogr. A 2018, 1555, 10-19. [CrossRef] open in new tab
  20. Makoś, P.; Boczkaj, G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels-Eco-friendly approach. J. Mol. Liq. 2019, 296, 111916-111927. [CrossRef] open in new tab
  21. Smink, D.; Kersten, S.R.A.; Schuur, B. Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep. Purif. Technol. 2019, 235, 116127. [CrossRef] open in new tab
  22. Makoś, P.; Słupek, E.; Gębicki, J. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents-Experimental and theoretical studies. J. Mol. Liq. 2020, in press. open in new tab
  23. Florindo, C.; Branco, L.C.; Marrucho, I.M. Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib. 2017, 448, 135-142. [CrossRef] open in new tab
  24. Zubeir, L.F.; Van Osch, D.J.G.P.; Rocha, M.A.A.; Banat, F.; Kroon, M.C. Carbon Dioxide Solubilities in Decanoic Acid-Based Hydrophobic Deep Eutectic Solvents. J. Chem. Eng. Data 2018, 63, 913-919. [CrossRef] open in new tab
  25. Słupek, E.; Makoś, P.; Gębicki, J. Deodorization of model biogas by means of novel non-ionic deep eutectic solvent. Arch. Environ. Prot. 2020, 46, 41-46. open in new tab
  26. Słupek, E.; Makoś, P. Absorptive Desulfurization of Model Biogas Stream Using Choline Chloride-Based Deep Eutectic Solvents. Sustainability 2020, 12, 1619. [CrossRef] open in new tab
  27. Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943-959. [CrossRef] open in new tab
  28. Samarov, A.A.; Smirnov, M.A.; Sokolova, M.P.; Toikka, A.M. Liquid-Liquid Equilibrium Data for the System N-Octane + Toluene + DES at 293.15 and 313.15 K and Atmospheric Pressure. Theor. Found. Chem. Eng. 2018, 52, 258-263. [CrossRef] open in new tab
  29. Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; Hadj-Kali, M.K.O.; Ghareh Bagh, F.S.; Alnashef, I.M. Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. J. Chem. Thermodyn. 2013, 65, 138-149. [CrossRef] open in new tab
  30. Sander, A.; Rogošić, M.; Slivar, A.; Žuteg, B. Separation of Hydrocarbons by Means of Liquid-Liquid Extraction with Deep Eutectic Solvents. Solvent Extr. Ion Exch. 2016, 34, 86-98. [CrossRef] open in new tab
  31. Hosseini, A.; Haghbakhsh, R.; Raeissi, S. Experimental Investigation of Liquid-Liquid Extraction of Toluene + Heptane or Toluene + Hexane Using Deep Eutectic Solvents. J. Chem. Eng. Data 2019, 64, 3811-3820. [CrossRef] open in new tab
  32. Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. Roles of a hydrogen bond donor and a hydrogen bond acceptor in the extraction of toluene from: N -heptane using deep eutectic solvents. Green Chem. 2016, 18, 3089-3097. [CrossRef] open in new tab
  33. Mulyono, S.; Hizaddin, H.F.; Alnashef, I.M.; Hashim, M.A.; Fakeeha, A.H.; Hadj-Kali, M.K. Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent-experiments and COSMO-RS prediction. RSC Adv. 2014, 4, 17597-17606. [CrossRef] open in new tab
  34. Zulkurnai, N.Z.; Mohammad Ali, U.F.; Ibrahim, N.; Abdul Manan, N.S. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES). IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012001. [CrossRef] open in new tab
  35. Ghazali, Z.; Hassan, N.H.; Yarmo, M.A.; Peng, T.L.; Othaman, R. Immobilization of choline chloride: Urea onto mesoporous silica for carbon dioxide capture. Sains Malaysiana 2019, 48, 1025-1033. [CrossRef] open in new tab
  36. Severa, G.; Bethune, K.; Rocheleau, R.; Higgins, S. SO2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chem. Eng. J. 2015, 265, 249-258. [CrossRef] open in new tab
  37. Zielińska-Jurek, A.; Bielan, Z.; Dudziak, S.; Wolak, I.; Sobczak, Z.; Klimczuk, T.; Nowaczyk, G.; Hupka, J. Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 2017, 7, 360. [CrossRef] open in new tab
  38. Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309-319. [CrossRef] open in new tab
  39. Nowicki, W.; Piskuła, Z.; Kirszensztejn, P. Characterisation of acidic properties of the surface of SiO2-SnO2 obtained by sol-gel method in anhydrous conditions. Prot. Met. Phys. Chem. Surfaces 2016, 52, 786-792. [CrossRef] open in new tab
  40. Diosa, J.; Guzman, F.; Bernal, C.; Mesa, M. Formation mechanisms of chitosan-silica hybrid materials and its performance as solid support for KR-12 peptide adsorption: Impact on KR-12 antimicrobial activity and proteolytic stability. J. Mater. Res. Technol. 2020, 9, 890-901. [CrossRef] open in new tab
  41. Shafqat, S.S.; Khan, A.A.; Zafar, M.N.; Alhaji, M.H.; Sanaullah, K.; Shafqat, S.R.; Murtaza, S.; Pang, S.C. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 2019, 8, 385-395. [CrossRef] open in new tab
  42. Wang, W.; Li, J.; Wei, X.; Ding, J.; Feng, H.; Yan, J.; Yang, J. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Appl. Energy 2015, 142, 221-228. [CrossRef] open in new tab
  43. Sas, O.G.; Fidalgo, R.; Domínguez, I.; Macedo, E.A.; González, B. Physical properties of the pure deep eutectic solvent, [ChCl]:[Lev] (1:2) DES, and its binary mixtures with alcohols. J. Chem. Eng. Data 2016, 61, 4191-4202. [CrossRef] open in new tab
  44. Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem. Eng. 2014, 2, 2416-2425. [CrossRef] open in new tab
  45. Hayyan, M.; Abo-Hamad, A.; AlSaadi, M.A.H.; Hashim, M.A. Functionalization of graphene using deep eutectic solvents. Nanoscale Res. Lett. 2015, 10, 324. [CrossRef] open in new tab
  46. Wang, J.; Sun, J.; Li, Y.; Wang, F. Preparation, characterization and luminescent properties of dense nano-silica hybrids loaded with 1,8-naphthalic anhydride. Luminescence 2014, 29, 188-194. [CrossRef] open in new tab
  47. Gomez, I.J.; Arnaiz, B.; Cacioppo, M.; Arcudi, F.; Prato, M. Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. J. Mater. Chem. B 2018, 6, 5540-5548. [CrossRef] open in new tab
  48. Musić, S.; Filipović-Vinceković, N.; Sekovanić, L. Precipitation of amorphous SiO 2 particles and their properties. Brazilian J. Chem. Eng. 2011, 28, 89-94. [CrossRef] open in new tab
  49. Sharma, R.K.; Puri, A.; Kumar, A.; Adholeya, A. Chemically modified silica gel with 1-{4-[(2-hydroxy-benzylidene)amino]phenyl}ethanone: Synthesis, characterization and application as an efficient and reusable solid phase extractant for selective removal of Zn(II) from mycorrhizal treated fly-ash sample. J. Environ. Sci. (China) 2013, 25, 1252-1261. [CrossRef] open in new tab
  50. Sasaki, H.; Daicho, S.; Yamada, Y.; Nibu, Y. Comparable strength of OH-O versus OH-π hydrogen bonds in hydrogen-bonded 2,3-benzofuran clusters with water and methanol. J. Phys. Chem. A 2013, 117, 3183-3189. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 155 times

Recommended for you

Meta Tags