Small regulatory bacterial RNAs regulating the envelope stress response - Publication - Bridge of Knowledge

Search

Small regulatory bacterial RNAs regulating the envelope stress response

Abstract

Most bacteria encode a large repertoire of RNA-based regulatory mechanisms. Recent discoveries have revealed that the expression of many genes is controlled by a plethora of base-pairing noncoding small regulatory RNAs (sRNAs), regulatory RNA-binding proteins and RNA-degrading enzymes. Some of these RNA-based regulated processes respond to stress conditions and are involved in the maintenance of cellular homeostasis. They achieve it by either direct posttranscriptional repression of several mRNAs, including blocking access to ribosome and/or directing them to RNA degradation when the synthesis of their cognate proteins is unwanted, or by enhanced translation of some key stressregulated transcriptional factors. Noncoding RNAs that regulate the gene expression by binding to regulatory proteins/transcriptional factors often act negatively by sequestration, preventing target recognition. Expression of many sRNAs is positively regulated by stress-responsive sigma factors like RpoE and RpoS, and two-component systems like PhoP/Q, Cpx and Rcs. Some of these regulatory RNAs act via a feedback mechanism on their own regulators, which is best reflected by recent discoveries, concerning the regulation of cell membrane composition by sRNAs in Escherichia coli and Salmonella, which are highlighted here.

Citations

  • 3 1

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Cite as

Full text

download paper
downloaded 68 times
Publication version
Accepted or Published Version
License
Copyright (Author(s))

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
BIOCHEMICAL SOCIETY TRANSACTIONS no. 45, edition 2, pages 417 - 425,
ISSN: 0300-5127
Language:
English
Publication year:
2017
Bibliographic description:
Klein-Raina G., Raina S.: Small regulatory bacterial RNAs regulating the envelope stress response// BIOCHEMICAL SOCIETY TRANSACTIONS. -Vol. 45, iss. 2 (2017), s.417-425
DOI:
Digital Object Identifier (open in new tab) 10.1042/bst20160367
Bibliography: test
  1. Cech, T.R. and Steitz, J.A. (2014) The noncoding RNA revolution -trashing old rules to forge new ones. Cell 157, 77-94 doi:10.1016/j.cell.2014.03.008 open in new tab
  2. Storz, G., Vogel, J. and Wassarman, K.M. (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880-891 doi:10.1016/j. molcel.2011.08.022 open in new tab
  3. Wagner, E.G.H. and Romby, P. (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv. Genet. 90, 133-208 doi:10.1016/bs.adgen.2015.05.001 open in new tab
  4. Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E.G.H., Margalit, H. et al. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11, 941-950 doi:10.1016/S0960-9822(01)00270-6 open in new tab
  5. Holmqvist, E., Wright, P.R., Li, L., Bischler, T., Barquist, L., Reinhardt, R. et al. (2016) Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35, 991-1011 doi:10.15252/embj.201593360 open in new tab
  6. Melamed, S., Peer, A., Faigenbaum-Romm, R., Gatt, Y.E., Reiss, N., Bar, A. et al. (2016) Global mapping of small RNA-target interactions in bacteria. Mol. Cell 63, 884-897 doi:10.1016/j.molcel.2016.07.026 open in new tab
  7. Smirnov, A., Förstner, K.U., Holmqvist, E., Otto, A., Günster, R., Becher, D. et al. (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc. Natl Acad. Sci. U.S.A. 113, 11591-11596 doi:10.1073/pnas.1609981113 open in new tab
  8. Waters, S.A., McAteer, S.P., Kudla, G., Pang, I., Deshpande, N.P., Amos, T.G. et al. (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J. 36, 374-387 doi:10.15252/embj.201694639 open in new tab
  9. Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C.M. and Vogel, J. (2012) An atlas of Hfq-bound transcripts reveals 3 0 UTRs as a genomic reservoir of regulatory small RNAs. EMBO J. 31, 4005-4019 doi:10.1038/emboj.2012.229 open in new tab
  10. Klein, G., Kobylak, N., Lindner, B., Stupak, A. and Raina, S. (2014) Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J. Biol. Chem. 289, 14829-14853 doi:10.1074/jbc.M113.539494 open in new tab
  11. Guo, M.S., Updegrove, T.B., Gogol, E.B., Shabalina, S.A., Gross, C.A. and Storz, G. (2014) MicL, a new σ E -dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev. 28, 1620-1634 doi:10.1101/gad.243485.114 open in new tab
  12. Chao, Y. and Vogel, J. (2016) A 3 0 UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61, 352-363 doi:10.1016/j.molcel.2015.12.023 open in new tab
  13. Klein, G., Stupak, A., Biernacka, D., Wojtkiewicz, P., Lindner, B. and Raina, S. (2016) Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective. J. Biol. Chem. 291, 22999-23019 doi:10.1074/jbc.M116.748954 open in new tab
  14. Arnvig, K. and Young, D. (2012) Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis. RNA Biol. 9, 427-436 doi:10.4161/rna.20105 open in new tab
  15. Thomason, M.K., Fontaine, F., De Lay, N. and Storz, G. (2012) A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17-35 doi:10.1111/j.1365-2958.2012.07965.x open in new tab
  16. Lee, H.-J. and Gottesman, S. (2016) sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res. 44, 6907-6923 doi:10.1093/nar/gkw358 open in new tab
  17. Fröhlich, K.S., Haneke, K., Papenfort, K. and Vogel, J. (2016) The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res. 44, 10406-10422 doi:10.1093/nar/gkw632 open in new tab
  18. Klein, G. and Raina, S. (2015) Regulated control of the assembly and diversity of LPS by noncoding sRNAs. BioMed Res. Int. 2015, 1-16 doi:10.1155/2015/153561 open in new tab
  19. Missiakas, D., Mayer, M.P., Lemaire, M., Georgopoulos, C. and Raina, S. (1997) Modulation of the Escherichia coli σ E (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24, 355-371 doi:10.1046/j.1365-2958.1997.3601713.x open in new tab
  20. Gogol, E.B., Rhodius, V.A., Papenfort, K., Vogel, J. and Gross, C.A. (2011) Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc. Natl Acad. Sci. U.S.A. 108, 12875-12880 doi:10.1073/pnas.1109379108 open in new tab
  21. Klein, G., Lindner, B., Brabetz, W., Brade, H. and Raina, S. (2009) Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J. Biol. Chem. 284, 15369-15389 doi:10.1074/ jbc.M900490200 open in new tab
  22. Klein, G., Lindner, B., Brade, H. and Raina, S. (2011) Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 286, 42787-42807 doi:10.1074/jbc.M111.291799 open in new tab
  23. Coornaert, A., Lu, A., Mandin, P., Springer, M., Gottesman, S. and Guillier, M. (2010) Mica sRNA links the PhoP regulon to cell envelope stress. Mol. Microbiol. 76, 467-479 doi:10.1111/j.1365-2958.2010.07115.x open in new tab
  24. Udekwu, K.I., Darfeuille, F., Vogel, J., Reimegård, J., Holmqvist, E. and Wagner, E.G.H. (2005) Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19, 2355-2366 doi:10.1101/gad.354405 open in new tab
  25. Brosse, A., Korobeinikova, A., Gottesman, S. and Guillier, M. (2016) Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system. Nucleic Acids Res. 44, 9650-9666 doi:10.1093/nar/gkw642 open in new tab
  26. Dartigalongue, C., Missiakas, D. and Raina, S. (2001) Characterization of the Escherichia coli σ E regulon. J. Biol. Chem. 276, 20866-20875 doi:10. 1074/jbc.M100464200 open in new tab
  27. Kabir, M.S., Yamashita, D., Koyama, S., Oshima, T., Kurokawa, K., Maeda, M. et al. (2005) Cell lysis directed by σ E in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology 151, 2721-2735 doi:10.1099/mic.0.28004-0 open in new tab
  28. Papenfort, K., Pfeiffer, V., Mika, F., Lucchini, S., Hinton, J.C.D. and Vogel, J. (2006) σ E -dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62, 1674-1688 doi:10.1111/j.1365-2958.2006.05524.x open in new tab
  29. Balbontín, R., Fiorini, F., Figueroa-Bossi, N., Casadesús, J. and Bossi, L. (2010) Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol. Microbiol. 78, 380-394 doi:10.1111/j.1365-2958.2010.07342.x open in new tab
  30. Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J.C.D. and Vogel, J. (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16, 840-846 doi:10.1038/nsmb.1631 open in new tab
  31. Noor, R., Murata, M., Nagamitsu, H., Klein, G., Raina, S. and Yamada, M. (2009) Dissection of σ E -dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst PpiD. Genes Cells 14, 885-899 doi:10.1111/j.1365-2443.2009.01318.x open in new tab
  32. Moon, K., Six, D.A., Lee, H.-J., Raetz, C.R.H. and Gottesman, S. (2013) Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol. Microbiol. 89, 52-64 doi:10.1111/mmi.12257 open in new tab
  33. Coornaert, A., Chiaruttini, C., Springer, M. and Guillier, M. (2013) Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet. 9, e1003156 doi:10.1371/journal.pgen.1003156 open in new tab
  34. Corcoran, C.P., Podkaminski, D., Papenfort, K., Urban, J.H., Hinton, J.C.D. and Vogel, J. (2012) Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol. Microbiol. 84, 428-445 doi:10.1111/j.1365-2958.2012.08031.x open in new tab
  35. Vogt, S.L., Evans, A.D., Guest, R.L. and Raivio, T.L. (2014) The Cpx envelope stress response regulates and is regulated by small noncoding RNAs. J. Bacteriol. 196, 4229-4238 doi:10.1128/JB.02138-14 open in new tab
  36. Missiakas, D., and Raina, S. (1997) Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli: role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J. 16, 1670-1685 doi:10.1093/emboj/16.7.1670 open in new tab
  37. Missiakas, D., Betton, J.-M. and Raina, S. (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871-884 doi:10.1046/j.1365-2958.1996.561412.x open in new tab
  38. Grabowicz, M., Koren, D. and Silhavy, T.J. (2016) The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. mBio 7, e00312-16 doi:10.1128/mBio.00312-16 open in new tab
  39. Colgan, A.M., Kröger, C., Diard, M., Hardt, W.-D., Puente, J.L., Sivasankaran, S.K. et al. (2016) The impact of 18 ancestral and horizontally-acquired regulatory proteins upon the transcriptome and sRNA landscape of Salmonella enterica serovar Typhimurium. PLoS Genet. 12, e1006258 doi:10.1371/ journal.pgen.1006258 open in new tab
  40. Mandin, P. and Gottesman, S. (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J. 29, 3094-3107 doi:10.1038/emboj.2010.179 open in new tab
  41. Rau, M.H., Bojanovic, K., Nielsen, A.T. and Long, K.S. (2015) Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli. BMC Genomics 16, 1051 doi:10.1186/s12864-015-2231-8 open in new tab
  42. Papenfort, K., Said, N., Welsink, T., Lucchini, S., Hinton, J.C.D. and Vogel, J. (2009) Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol. Microbiol. 74, 139-158 doi:10.1111/j.1365-2958.2009.06857.x open in new tab
  43. Silva, I.J., Ortega, A.D., Viegas, S.C., García-Del Portillo, F. and Arraiano, C.M. (2013) An RpoS-dependent sRNA regulates the expression of a chaperone involved in protein folding. RNA 19, 1253-1265 doi:10.1261/rna.039537.113 open in new tab
  44. Hao, Y., Updegrove, T.B., Livingston, N.N. and Storz, G. (2016) Protection against deleterious nitrogen compounds: role of σ S -dependent small RNAs encoded adjacent to sdiA. Nucleic Acids Res. 44, 6935-6948 doi:10.1093/nar/gkw404 open in new tab
  45. Vakulskas, C.A., Potts, A.H., Babitzke, P., Ahmer, B.M.M. and Romeo, T. (2015) Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193-224 doi:10.1128/MMBR.00052-14 open in new tab
  46. Jørgensen, M.G., Thomason, M.K., Havelund, J., Valentin-Hansen, P. and Storz, G. (2013) Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev. 27, 1132-1145 doi:10.1101/gad.214734.113 open in new tab
  47. Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613-623 doi:10.1016/S0092-8674(00)80873-9 open in new tab
  48. Panchapakesan, S.S.S. and Unrau, P.J. (2012) E. coli 6S RNA release from RNA polymerase requires σ 70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA 18, 2251-2259 doi:10.1261/rna.034785.112 open in new tab
  49. Burmann, B.M., Knauer, S.H., Sevostyanova, A., Schweimer, K., Mooney, R.A., Landick, R. et al. (2012) An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150, 291-303 doi:10.1016/j.cell.2012.05.042 open in new tab
  50. Amin, S.V., Roberts, J.T., Patterson, D.G., Coley, A.B., Allred, J.A., Denner, J.M. et al. (2016) Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol. 13, 331-342 doi:10.1080/15476286.2016.1144010 open in new tab
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags