Abstract
Cognition in computer sciences refers to the ability of a system to learn at scale, reason with purpose, and naturally interact with humans and other smart systems, such as humans do. To enhance intelligence, as well as to introduce cognitive functions into machines, recent studies have brought humans into the loop, turning the system into a human–AI hybrid. To effectively integrate and manipulate hybrid knowledge, suitable technologies and guidelines are required to sustain the human–AI interface so that communication can occur. However, traditional Knowledge Management (KM) and Knowledge Engineering (KE) approaches encounter problems when dealing with cutting-edge technologies, imposing impediments for the use of traditional methods in cognitive systems (CS). This paper presents a brief overview of the Smart Knowledge Engineering for Cognitive Systems (SKECS), which is based on methods, technologies, and procedures that bring innovations to the fields of KE, KM, and CS. The goal is to bridge the gap in the hybrid cognitive interface by the combination of experience-based knowledge representation with the use of emerging technologies such as deep learning, context-aware indexing/retrieval, active learning with a human-in-the-loop, and stream reasoning. In this work Set of Experience Knowledge Structure (SOEKS) and Decision DNA (DDNA) is extended to the visual domain and utilized for knowledge capture, representation, reuse, and evolution. These technologies are examined throughout the layers of SKECS for applications in knowledge acquisition, formalization, storage/retrieval, learning, and reasoning, with the final goal of achieving knowledge augmentation (wisdom) in CS. Features of the SKECS and their practical implementation is discussed through a case study—the Cognitive Vision Platform for Hazard Control (CVP-HC)—suggesting that methods, techniques and procedures comprising the SKECS are suitable for advancing systems toward augmented cognition.
Citations
-
3
CrossRef
-
0
Web of Science
-
4
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1080/01969722.2021.2018542
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
CYBERNETICS AND SYSTEMS
no. 53,
pages 384 - 402,
ISSN: 0196-9722 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Silva de Oliveira C., Sanin C., Szczerbicki E.: Smart Knowledge Engineering for Cognitive Systems: A Brief Overview// CYBERNETICS AND SYSTEMS -Vol. 53,iss. 5 (2022), s.384-402
- DOI:
- Digital Object Identifier (open in new tab) 10.1080/01969722.2021.2018542
- Verified by:
- Gdańsk University of Technology
seen 123 times
Recommended for you
Visual Content Representation for Cognitive Systems: Towards Augmented Intelligence
- C. S. d. Oliveira,
- C. Sanin,
- E. Szczerbicki
Image Representation for Cognitive Systems Using SOEKS and DDNA: A Case Study for PPE Compliance
- C. Silva de Oliveira,
- C. Sanin,
- E. Szczerbicki
Visual content representation and retrieval for Cognitive Cyber Physical Systems
- C. S. d. Oliveira,
- C. Sanin,
- E. Szczerbicki
Virtual Engineering Object (VEO): Toward Experience-Based Design and Manufacturing for Industry 4.0
- S. I. Shafiq,
- C. Sanin,
- C. Toro
- + 1 authors