Stress Relaxation Behaviour Modeling in Rigid Polyurethane (PU) Elastomeric Materials - Publication - Bridge of Knowledge

Search

Stress Relaxation Behaviour Modeling in Rigid Polyurethane (PU) Elastomeric Materials

Abstract

Polyurethane (PU) has been used in a variety of industries during the past few years due to its exceptional qualities, including strong mechanical strength, good abrasion resistance, toughness, low-temperature flexibility, etc. More specifically, PU is easily “tailored” to satisfy particular requirements. There is a lot of potential for its use in broader applications due to this structure–property link. Ordinary polyurethane items cannot satisfy people’s increased demands for comfort, quality, and novelty as living standards rise. The development of functional polyurethane has recently received tremendous commercial and academic attention as a result. In this study, the rheological behavior of a polyurethane elastomer of the PUR (rigid polyurethane) type was examined. The study’s specific goal was to examine stress relaxation for various bands of specified strains. We also suggested the use of a modified Kelvin–Voigt model to describe the stress relaxation process from the perspective of the author. For the purpose of verification, materials with two different Shore hardness ratings—80 and 90 ShA, respectively—were chosen. The outcomes made it possible to positively validate the suggested description in a variety of deformations ranging from 50% to 100%.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Authors (10)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 16,
ISSN: 1996-1944
Language:
English
Publication year:
2023
Bibliographic description:
Zielonka P., Junik K., Duda S., Socha T., Kula K., Denisiewicz A., Kayode O., Macek W., Lesiuk G., Błażejewski W.: Stress Relaxation Behaviour Modeling in Rigid Polyurethane (PU) Elastomeric Materials// Materials -,iss. 16(8) (2023),
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma16083156
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 85 times

Recommended for you

Meta Tags