Study of oxygen electrode reactions on symmetrical porous SrTi0.30Fe0.70O3-δ electrodes on Ce0.8Gd0.2O1.9 electrolyte at 800 °C–500 °C - Publication - Bridge of Knowledge

Search

Study of oxygen electrode reactions on symmetrical porous SrTi0.30Fe0.70O3-δ electrodes on Ce0.8Gd0.2O1.9 electrolyte at 800 °C–500 °C

Abstract

Iron doped strontium titanates (SrTi1-xFexO3-δ) are an interesting mixed ionic-electronic conductor model used to study basic oxygen reduction/oxidation reactions. In this work, we performed an impedance spectroscopy study on symmetrical porous SrTi0.30Fe0.70O3-δ (STF70) electrodes on a ceriabased electrolyte. The sample was measured in varying oxygen concentration: from 0.3% to 100% in 800 °C - 500 °C temperature range. Low polarisation resistance (e.g. <125 mΩ cm2 at 600 °C in the air) values were obtained, showing an overall high performance of the STF70 electrode. Impedance data analysis was assisted by the distribution of relaxation times method, which allowed an equivalent electrical circuit to be proposed comprising of two resistance/constant phase element sub-circuits connected in series. The medium frequency contribution, with a characteristic frequency of ~2000 Hz at 800 °C in air, originates most probably from possible surface diffusion followed by charge transfer reaction limitation, whereas the lower frequency contribution (characteristic frequency <10 Hz) is due to gas-phase diffusion.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ELECTROCHIMICA ACTA no. 346,
ISSN: 0013-4686
Language:
English
Publication year:
2020
Bibliographic description:
Mroziński A., Molin S., Jasiński P.: Study of oxygen electrode reactions on symmetrical porous SrTi0.30Fe0.70O3-δ electrodes on Ce0.8Gd0.2O1.9 electrolyte at 800 °C–500 °C// ELECTROCHIMICA ACTA -Vol. 346, (2020), s.136285-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2020.136285
Bibliography: test
  1. P. Caliandro, A. Nakajo, S. Diethelm, J. Van herle, Model-assisted identification of solid oxide cell elementary processes by electrochemical impedance spectroscopy measurements, J. Power Sources 436 (2019) 226838, https:// doi.org/10.1016/j.jpowsour.2019.226838. open in new tab
  2. A.J. Samson, M. Søgaard, P.V. Hendriksen, Model for solid oxide fuel cell cathodes prepared by infiltration, Electrochim. Acta 229 (2017) 73e95, https://doi.org/10.1016/j.electacta.2017.01.088. open in new tab
  3. C. Lenser, N.H. Menzler, Impedance characterization of supported oxygen ion conducting electrolytes, Solid State Ionics 334 (2019) 70e81, https://doi.org/ 10.1016/j.ssi.2019.01.031. open in new tab
  4. D. Sandil, S. Kumar, K. Arora, S. Srivastava, B.D. Malhotra, S.C. Sharma, N.K. Puri, Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection, Mater. Lett. 186 (2017) 202e205, https://doi.org/ 10.1016/j.matlet.2016.09.107. open in new tab
  5. S. Singal, A.K. Srivastava, Rajesh, Electrochemical impedance analysis of bio- functionalized conducting polymer-modified graphene-CNTs nanocomposite for protein detection, Nano-Micro Lett. 9 (2017) 1e9, https://doi.org/10.1007/ s40820-016-0108-2. open in new tab
  6. C. Wei, X. Zou, Q. Liu, S. Li, C. Kang, W. Xiang, A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays, Electrochim. Acta 334 (2020) 135630, https://doi.org/10.1016/ j.electacta.2020.135630. open in new tab
  7. J.L. Song, X. Guo, SrTi 0.65 Fe 0.35 O 3 nanofibers for oxygen sensing, Solid State Ionics 278 (2015) 26e31, https://doi.org/10.1016/j.ssi.2015.05.009. open in new tab
  8. L. Folkertsma, L. Gehrenkemper, J. Eijkel, K. Gerritsen, M. Odijk, Reference- electrode free pH sensing using impedance spectroscopy, Proceedings 2 (2018) 742, https://doi.org/10.3390/proceedings2130742. open in new tab
  9. L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, Electrochemical impedance spectroscopic analysis of RuO 2 based thick film pH sensors, Electrochim. Acta 168 (2015) 246e255, https://doi.org/10.1016/ j.electacta.2015.04.048. open in new tab
  10. K. Cysewska, L.F. Macía, P. Jasi nski, A. Hubin, In-situ odd random phase electrochemical impedance spectroscopy study on the electropolymerization of pyrrole on iron in the presence of sodium salicylate e the influence of the monomer concentration, Electrochim. Acta 290 (2018) 520e532, https:// doi.org/10.1016/j.electacta.2018.09.069. open in new tab
  11. K. Cysewska, M. Gazda, P. Jasi nski, Influence of electropolymerization tem- perature on corrosion, morphological and electrical properties of PPy doped with salicylate on iron, Surf. Coating. Technol. 328 (2017) 248e255, https:// doi.org/10.1016/j.surfcoat.2017.08.055. open in new tab
  12. E. Ivers-Tiff ee, A. Weber, Evaluation of electrochemical impedance spectra by the distribution of relaxation times, J. Ceram. Soc. Japan. 125 (2017) 193e201, https://doi.org/10.2109/jcersj2.125.P4-1. open in new tab
  13. B.A. Boukamp, A. Rolle, Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes, Solid State Ionics 314 (2018) 103e111, https://doi.org/10.1016/j.ssi.2017.11.021. open in new tab
  14. D. Papurello, D. Menichini, A. Lanzini, Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes, Electrochim. Acta 258 (2017) 98e109, https://doi.org/10.1016/j.electacta.2017.10.052. open in new tab
  15. D.A. Osinkin, Complementary effect of ceria on the hydrogen oxidation ki- netics on Ni -Ce 0.8 Sm 0.2 O 2-d anode, Electrochim. Acta 330 (2020) 135257, https://doi.org/10.1016/j.electacta.2019.135257. open in new tab
  16. J. Liu, F. Ciucci, The Gaussian process distribution of relaxation times: a ma- chine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data, Electrochim. Acta 331 (2020) 135316, https:// doi.org/10.1016/j.electacta.2019.135316. open in new tab
  17. X. Li, M. Ahmadi, L. Collins, S.V. Kalinin, Deconvolving distribution of relaxa- tion times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: exploiting structural-sparsity regularization and data-driven parameter tuning, Electrochim. Acta 313 (2019) 570e583, https://doi.org/10.1016/j.electacta.2019.05.010. open in new tab
  18. H. Sumi, H. Shimada, Y. Yamaguchi, T. Yamaguchi, Y. Fujishiro, Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells, Electrochim, Acta 339 (2020) 135913, https://doi.org/10.1016/ j.electacta.2020.135913. open in new tab
  19. F. Ciucci, C. Chen, Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a bayesian and hierarchical bayesian approach, Electrochim. Acta 167 (2015) 439e454, https://doi.org/ 10.1016/j.electacta.2015.03.123. open in new tab
  20. M. Saccoccio, T.H. Wan, C. Chen, F. Ciucci, Optimal regularization in distri- bution of relaxation times applied to electrochemical impedance spectros- copy: ridge and Lasso regression methods -a theoretical and experimental Study, Electrochim. Acta 147 (2014) 470e482, https://doi.org/10.1016/ j.electacta.2014.09.058. open in new tab
  21. T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools, Electrochim. Acta 184 (2015) 483e499, https://doi.org/10.1016/j.electacta.2015.09.097. open in new tab
  22. E. Quattrocchi, T.H. Wan, A. Curcio, S. Pepe, M.B. Effat, F. Ciucci, A general model for the impedance of batteries and supercapacitors: the non-linear distribution of diffusion times, Electrochim. Acta 324 (2019) 134853, https://doi.org/10.1016/j.electacta.2019.134853. open in new tab
  23. F. Ciucci, Modeling electrochemical impedance spectroscopy, Curr. Opin. Electrochem. 13 (2019) 132e139, https://doi.org/10.1016/ j.coelec.2018.12.003. open in new tab
  24. A.P. Tarutin, G.K. Vdovin, D.A. Medvedev, A.A. Yaremchenko, Fluorine-con- taining oxygen electrodes of the nickelate family for proton-conducting electrochemical cells, Electrochim. Acta 337 (2020) 135808, https://doi.org/ 10.1016/j.electacta.2020.135808. open in new tab
  25. S. Wang, H. Jiang, Y. Gu, B. Yin, S. Chen, M. Shen, Y. Zheng, L. Ge, H. Chen, L. Guo, Mo-doped La 0$6 Sr 0$4 Fe O3-d as an efficient fuel electrode for direct electrolysis of CO 2 in solid oxide electrolysis cells, Electrochim. Acta 337 (2020) 135794, https://doi.org/10.1016/j.electacta.2020.135794. open in new tab
  26. N. Ortiz-Vitoriano, A. Hauch, I. Ruiz de Larramendi, C. Bernuy-L opez, R. Knibbe, T. Rojo, Electrochemical characterization of La 0.6 Ca 0.4 Fe 0.8 Ni 0.2 O 3Àd perovskite cathode for IT-SOFC, J. Power Sources 239 (2013) 196e200, https:// doi.org/10.1016/j.jpowsour.2013.03.121. open in new tab
  27. A. Chrzan, S. Ovtar, P. Jasinski, M. Chen, A. Hauch, High performance LaNi 1- x Co x O 3-d (x ¼ 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells, J. Power Sources 353 (2017) 67e76, https://doi.org/10.1016/ j.jpowsour.2017.03.148. open in new tab
  28. X. Tong, S. Ovtar, K. Brodersen, P.V. Hendriksen, M. Chen, Large-area solid oxide cells with La 0.6 Sr 0.4 CoO 3-d infiltrated oxygen electrodes for electricity generation and hydrogen production, J. Power Sources 451 (2020) 227742, https://doi.org/10.1016/j.jpowsour.2020.227742. open in new tab
  29. J. Schneider, T. Tichter, P. Khadke, R. Zeis, C. Roth, Deconvolution of electro- chemical impedance data for the monitoring of electrode degradation in VRFB, Electrochim. Acta 336 (2019) 135510, https://doi.org/10.1016/ j.electacta.2019.135510. open in new tab
  30. H. Qu, J. Kafle, J. Harris, D. Zheng, J. Koshina, D. Boone, A.M. Drake, C.J. Abegglen, D. Qu, Application of ac impedance as diagnostic tool e low temperature electrolyte for a Li-ion battery, Electrochim. Acta 322 (2019), https://doi.org/10.1016/j.electacta.2019.134755. open in new tab
  31. S. Sun, Z. Cheng, Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC, J. Electrochem. Soc. 164 (2017) F3104eF3113, https://doi.org/10.1149/2.0121710jes. open in new tab
  32. Y. Li, R. Gemmen, X. Liu, Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes, J. Power Sources 195 (2010) 3345e3358, https://doi.org/10.1016/j.jpowsour.2009.12.062. open in new tab
  33. Y. Takeda, Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia, J. Electrochem. Soc. 134 (1987) 2656, https://doi.org/ 10.1149/1.2100267. open in new tab
  34. P. Hjalmarsson, M. Søgaard, M. Mogensen, Electrochemical performance and degradation of (La 0.6 Sr 0.4 ) 0.99 CoO 3-d as porous SOFC-cathode, Solid State Ionics 179 (2008) 1422e1426, https://doi.org/10.1016/j.ssi.2007.11.010. open in new tab
  35. L. Navarrete, C. Solís, J.M. Serra, Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization, J. Mater. Chem. A. 3 (2015) 16440e16444, https://doi.org/10.1039/c5ta05187h. open in new tab
  36. R. Merkle, J. Maier, How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material, Angew. Chem. Int. Ed. 47 (2008) 3874e3894, https://doi.org/10.1002/ anie.200700987. open in new tab
  37. J. Fleig, R. Merkle, J. Maier, The p(O2) dependence of oxygen surface coverage and exchange current density of mixed conducting oxide electrodes: model considerations, Phys. Chem. Chem. Phys. 9 (2007) 2713e2723, https://doi.org/ 10.1039/b618765j. open in new tab
  38. W. Jung, H.L. Tuller, Investigation of cathode behavior of model thin-film SrTi 1 -x Fe x O 3 -d (x ¼ 0.35 and 0.5) mixed ionic-electronic conducting electrodes, J. Electrochem. Soc. 155 (2008) B1194eB1201, https://doi.org/10.1149/ 1.2976212. open in new tab
  39. N.H. Perry, G.F. Harrington, H.L. Tuller, Electrochemical Ionic Interfaces, Elsevier Inc., 2018, pp. 79e106, https://doi.org/10.1016/B978-0-12-811166- 6.00004-2. open in new tab
  40. T. Miruszewski, K. Dzierzgowski, P. Winiarz, S. Wachowski, A. Mielewczyk- Gry n, M. Gazda, Structural properties and water uptake of STi 1-x Fe x O 3-x/2-d , Materials 13 (2020) 965, https://doi.org/10.3390/ma13040965. open in new tab
  41. S.J. Litzelman, A. Rothschild, H.L. Tuller, The electrical properties and stability of SrTi 0.65 Fe 0.35 O 3Àd thin films for automotive oxygen sensor applications, Sensor. Actuator. B Chem. 108 (2005) 231e237, https://doi.org/10.1016/ j.snb.2004.10.040. open in new tab
  42. A. Rothschild, W. Menesklou, H.L. Tuller, E. Ivers-Tiff ee, Electronic structure, defect chemistry, and transport properties of SrTi 1-x Fe x O 3-y solid solutions, Chem. Mater. 18 (2006) 3651e3659, https://doi.org/10.1021/cm052803x. open in new tab
  43. P.J. Gellings, H.J.M. Bouwmeester, Ion and mixed conducting oxides as cata- lysts, Catal. Today 12 (1992) 1e101, https://doi.org/10.1016/0920-5861(92) 80046-P. open in new tab
  44. P.J. Gellings, H.J.M. Bouwmeester, Solid state aspects of oxidation catalysis, Catal. Today 58 (2000) 1e53, https://doi.org/10.1016/S0920-5861(00)00240- 6. open in new tab
  45. S. Molin, W. Lewandowska-Iwaniak, B. Kusz, M. Gazda, P. Jasinski, Structural and electrical properties of Sr(Ti, Fe)O 3-d materials for SOFC cathodes, J. Elec- troceram. 28 (2012) 80e87, https://doi.org/10.1007/s10832-012-9683-x. open in new tab
  46. A. Mrozi nski, S. Molin, J. Karczewski, T. Miruszewski, P. Jasi nski, Electro- chemical properties of porous Sr 0.86 Ti 0.65 Fe 0.35 O 3 oxygen electrodes in solid oxide cells: impedance study of symmetrical electrodes, Int. J. Hydrogen En- ergy 44 (2019) 1827e1838, https://doi.org/10.1016/j.ijhydene.2018.11.203. open in new tab
  47. R. Moos, W. Menesklou, H.J. Schreiner, K.H. H€ ardtl, Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control, Sensor. Actuator. B Chem. 67 (2000) 178e183, https://doi.org/10.1016/S0925- 4005(00)00421-4. open in new tab
  48. H.Y. Li, H. Yang, X. Guo, Oxygen sensors based on SrTi 0.65 Fe 0.35 O 3-d thick film with MgO diffusion barrier for automotive emission control, Sensor. Actuator. B Chem. 213 (2015) 102e110, https://doi.org/10.1016/j.snb.2015.02.079. open in new tab
  49. A. Mrozi nski, S. Molin, P. Jasi nski, Effect of sintering temperature on electro- chemical performance of porous SrTi 1-x Fe x O 3-d (x¼ 0.35, 0.5, 0.7) oxygen electrodes for solid oxide cells, J. Solid State Electrochem. (2020), https:// doi.org/10.1007/s10008-020-04534-0. open in new tab
  50. A. Mrozi nski, S. Molin, J. Karczewski, B. Kamecki, P. Jasi nski, The influence of iron doping on performance of SrTi 1-x Fe x O 3-d perovskite oxygen electrode for SOFC, ECS Trans 91 (2019) 1299e1307, https://doi.org/10.1149/ 09101.1299ecst. open in new tab
  51. F. Tietz, Thermal expansion of SOFC materials, Ionics 5 (1999) 129e139, https://doi.org/10.1007/BF02375916. open in new tab
  52. A. Løken, S. Ricote, S. Wachowski, Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes, Crystals 8 (2018) 365, https:// doi.org/10.3390/cryst8090365. open in new tab
  53. M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electro- chemical properties of pure and doped ceria, Solid State Ionics 129 (2000) 63e94, https://doi.org/10.1016/S0167-2738(99)00318-5. open in new tab
  54. W. Jung, H.L. Tuller, Impedance study of SrTi 1-x Fe x O 3-d (x ¼ 0.05 to 0.80) mixed ionic-electronic conducting model cathode, Solid State Ionics 180 (2009) 843e847, https://doi.org/10.1016/j.ssi.2009.02.008. open in new tab
  55. M. Heinzmann, A. Weber, E. Ivers-Tiff ee, Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times, J. Power Sources 402 (2018) 24e33, https://doi.org/10.1016/ j.jpowsour.2018.09.004. open in new tab
  56. B.A. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ionics 169 (2004) 65e73, https://doi.org/10.1016/ j.ssi.2003.07.002. open in new tab
  57. C. Chatzichristodoulou, P.T. Blennow, M. Søgaard, P. V Hendriksen, M.B. Mogensen, Ceria and its use in solid oxide cells and oxygen membranes. Catal. By Ceria Relat. Mater., second ed., 2013, pp. 623e782, https://doi.org/ 10.1142/9781848169647_0012. open in new tab
  58. M.J. Escudero, A. Aguadero, J.A. Alonso, L. Daza, A kinetic study of oxygen reduction reaction on La 2 NiO 4 cathodes by means of impedance spectroscopy, J. Electroanal. Chem. 611 (2007) 107e116, https://doi.org/10.1016/ j.jelechem.2007.08.006. open in new tab
  59. K. Masuda, A. Kaimai, K. Kawamura, Y. Nigara, T. Kawada, J. Mizusaki, H. Yugami, H. Arashi, Electrochemical reaction kinetics of mixed conducting electrodes on CeO 2 -based solid electrolytes, in: Proc. Electrochem. Soc., 1997, pp. 473e482.
  60. B.C.H. Steele, Survey of materials selection for ceramic fuel cells, Solid State Ionics 88 (1996) 1223e1234, https://doi.org/10.1016/0167-2738(96)00291-3. open in new tab
  61. S.L. Zhang, H. Wang, M.Y. Lu, A.P. Zhang, L.V. Mogni, Q. Liu, C.X. Li, C.J. Li, S.A. Barnett, Cobalt-substituted SrTi 0.3 Fe 0.7 O 3-d : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electro- chemical cells, Energy Environ. Sci. 11 (2018) 1870e1970, https://doi.org/ 10.1039/C8EE00449H. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

Referenced datasets

zobacz wszystkie (17)

seen 114 times

Recommended for you

Meta Tags