Abstract
Widespread and popular use of ceramic products in various industry sectors necessitates the search for methods of their efficient processing. Lapping technology, which enables obtaining high dimensional and shape accuracy and high surface flatness, is one of the basic methods of finishing hard and brittle technical ceramics with a porous structure. This study analyzed the characteristics and wear value of an SLS-printed abrasive tool intended for single-sided lapping of Al2O3 technical ceramics. As earlier research demonstrated, introduction of a 3D printed lapping plate by selective laser sintering (SLS), leads to a significant development in the field of precision machining technology. This method showed not only efficient machining performance on oxide technical materials, but was also characterized by relatively low abrasive wear. Straightness errors were evaluated with the use of a least-squares method (LSQ) and minimum zone method based on control line rotation scheme (CLRS). The proposed model proved the experimental results by identifying a similar location of a higher contact density on the lapping tool, where this location is expected to be the one for bigger wear. Surface topography of the lapping tool depends on the tool wear intensity and as a consequence on its shape error. An SLS-printed lapping plate, by obtaining good technological effects, revealed its potential ability in machining hard and brittle technical ceramics.
Citations
-
0
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wear.2024.205515
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
WEAR
no. 556-557,
ISSN: 0043-1648 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Deja M., Zieliński D., Agebo S. W.: Study on the wear characteristics of a 3D printed tool in flat lapping of Al2O3 ceramic materials// WEAR -Vol. 556-557, (2024), s.205515-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wear.2024.205515
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 38 times
Recommended for you
Applications of Additively Manufactured Tools in Abrasive Machining—A Literature Review
- M. Deja,
- D. Zieliński,
- A. Z. A. Kadir
- + 1 authors