Synteza koniugatów parasoli molekularnych ze związkami o udowodnionej aktywności przeciwgrzybiczej - Publication - Bridge of Knowledge

Search

Synteza koniugatów parasoli molekularnych ze związkami o udowodnionej aktywności przeciwgrzybiczej

Abstract

W ramach badań, opisanych w niniejszej rozprawie doktorskiej, zaprojektowano, otrzymano oraz scharakteryzowano połączenia tzw. parasoli molekularnych ze związkami o udowodnionej aktywności przeciwgrzybowej – FMDP i cis-pentacyny – będących inhibitorami enzymów grzybowych. Wspomniane cząsteczki aktywne wykazują dobre właściwości przeciwgrzybowe, jednak ze względu na swoją budowę chemiczną i polarny charakter, wykazują silnie ograniczoną zdolność do przenikania przez biwarstwę lipidową. Parasole molekularne stanowią grupę stosunkowo niedawno poznanych nanonośników, zdolnych do przenikania błon biologicznych na drodze dyfuzji prostej oraz zdolnych do transportu cząsteczek polarnych do wnętrza komórek. W efekcie badań eksperymentalnych otrzymano czternaście pochodnych – dziesięć połączeń parasoli molekularnych z cząsteczkami aktywnymi oraz cztery pochodne fluorescencyjne. W ramach pracy badawczej przetestowano możliwość tworzenia połączeń parasoli molekularnych z cząsteczkami transportowanymi połączonych za pośrednictwem różnych łączników. Zaproponowano także dwie alternatywne metody syntezy struktur parasolowych. Najprostsze otrzymane pochodne to bezpośrednie połączenia amidowe struktury nanonośnika z cząsteczką transportowaną. Pozostałe koniugaty zawierają w swojej strukturze labilny łącznik potencjalnie ulegający lizie w środowisku cytoplazmy patogennych komórek grzybowych. Jednymi z zastosowanych łączników są struktury dipeptydowe, w których cząsteczka ładunku połączona jest za pośrednictwem wiązania peptydowego, potencjalnie rozpoznawanego przez komórkowe amidazy. W innym podejściu zastosowano ideę tzw. układu ‘trimethyl lock’ labilnego w środowisku aktywności esteraz, w którym to cząsteczka ładunku tworzy wiązanie amidowe z jedną z grup karboksylowych wspomnianego układu. Podjęto także próbę syntezy koniugatów wyposażonych w łącznik o-ditiobenzoiloakrbamoilowy, zawierający w swojej konstytucji wiązanie disulfidowe, redukowane przez komórkowy glutation. Wszystkie końcowe oraz pośrednie struktury poddano analizie strukturalnej z wykorzystaniem technik spektroskopowych, m. in. spektroskopią 1H NMR i 13C NMR oraz spektrometrią mas. Ponadto, oznaczono ich czystość chemiczna przy pomocy wysokosprawnej chromatografii cieczowej (HPLC). Otrzymane pochodne przekazano do badań biologicznych mających na celu określenie aktywności przeciwgrzybowej, hemotoksyczności oraz cytotoksyczności.

Cite as

Full text

download paper
downloaded 322 times
Publication version
Accepted or Published Version
License
Copyright (Author)

Keywords

Details

Category:
Thesis, nostrification
Type:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Language:
Polish
Publication year:
2017
Bibliography: test
  1. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133-163 (2007). open in new tab
  2. White, T. C., Marr, K. A. & Bowden, R. A. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382-402 (1998). open in new tab
  3. Mutschler, E., Geisslinger, G., Kroemer, H. K., Ruth, P. & Schaefer-Korting, M. Mutschler farmakologia i toksykologia podręcznik. MedPharm Polska. ISBN: 978-83- 7609-719-0 (2016). open in new tab
  4. Milewski, S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. Biochim. Biophys. Acta 1597, 173-192 (2002). open in new tab
  5. Teplyakov, A., Obmolova, G., Badet, B. & Badet-Denisot, M.-A. Channeling of ammonia in glucosamine-6-phosphate synthase. J. Mol. Biol. 313, 1093-1102 (2001). open in new tab
  6. Milewski, S., Kuszczak, D., Jedrzejczak, R., Smith, R. J., Brown, A. J., Gooday, G. W. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase. J. Biol. Chem. 274, 4000-8 (1999). open in new tab
  7. Tarnowska, M., Oldziej, S., Liwo, A., Grzonka, Z. & Borowski, E. Investigation of the inhibition pathway of glucosamine synthase by N3-(4-methoxyfumaroyl)-L-2,3- diaminopropanoic acid by semiempirical quantum mechanical and molecular mechanics methods. Eur. Biophys. J. 21, 273-280 (1992). open in new tab
  8. Chmara, H., Milewski, S., Andruszkiewicz, R., Mignini, F. & Borowski, E. Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology 144, 1949-1358 (1998). open in new tab
  9. Zgódka, D., Jȩdrzejczak, R., Milewski, S. & Borowski, E. Amide and ester derivatives of N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid: the selective inhibitor of glucosamine-6-phosphate synthase. Bioorg. Med. Chem. 9, 931-938 (2001). open in new tab
  10. Skwarecki, A. S., Milewski, S., Schielmann, M. & Milewska, M. J. Antimicrobial molecular nanocarrier-drug conjugates. Nanomed. Nanotechnol. 12, 2215-2240 (2016). open in new tab
  11. Wong, B. S., Yoong, S. L., Jagusiak, A., Panczyk, T., Ho, H. K., Ang, W. H. & Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964-2015 (2013). open in new tab
  12. Bandow, S., Rao, A. M., Williams, K. A., Thess, A., Smalley, R. E. & Eklund, P C. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B. 101, 8839-8842 (1997). open in new tab
  13. Chen, R. J., Zhang, Y., Wang, D. & Hongjie, D. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838-3839 (2001). open in new tab
  14. Kam, N. W. S., Liu, Z. & Hongjie, D. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492-12493 (2005). open in new tab
  15. Rosca, I. D., Watari, F., Uo, M. & Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon N. Y. 43, 3124-3131 (2005). open in new tab
  16. Moghaddam, M. J., Taylor, S., Gao, M., Huang, S., Dai, L. & McCall, M. J. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4, 89-93 (2004). open in new tab
  17. Coleman, K. S., Bailey, S. R., Fogden, S. & Green, M. L. H. Functionalization of single- walled carbon nanotubes via the Bingel reaction. J. Am. Chem. Soc. 125, 8722-8723 (2003). open in new tab
  18. Tagmatarchis, N. & Prato, M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J. Mater. Chem. 14, 437 (2004). open in new tab
  19. Bianco, A. & Prato, M. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 15, 1765-1768 (2003). open in new tab
  20. Pantarotto, D., Partidos, C. D., Graff, R., Hoebeke, J., Briand, J.-P., Prato, M. & Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160-6164 (2003). open in new tab
  21. Pantarotto, D., Partidos, C. D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.-P., Muller, S., Prato, M. & Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961-966 (2003). open in new tab
  22. Bianco, A., Kostarelos, K., Partidos, C. D., Prato, M., Hamers, R. J., Erie, D., Usrey, M. L., Dresselhaus, M. S., McLean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M. & Walls, D. J. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 2, 571 (2005). open in new tab
  23. Kam, N. W. S., Jessop, T. C., Wender, P. A. & Hongjie, D. Nanotube molecular transporters: internalization of carbon nanotube−protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850-6851 (2004).
  24. Kam, N. W. S. & Hongjie, D. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021-6026 (2005). open in new tab
  25. Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J.-P., Prato, M., Kostarelos, K. & Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chemie Int. Ed. 43, 5242-5246 (2004). open in new tab
  26. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C. D., Briand, J.-P., Prato, M., Bianco, A. & Kostarelos, K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388-4396 (2005). open in new tab
  27. Liu, Y., Wu, D.-C., Zhang, W.-D., Jiang, X., He, C.-B., Chung, T. S., Goh, S. H. & Leong, K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chemie Int. Ed. 44, 4782-4785 (2005). open in new tab
  28. Gao, L., Nie, L., Wang, T., Qin, Y., Guo, Z., Yang, D. & Yan, X. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 7, 239-242 (2006). open in new tab
  29. Crinelli, R., Carloni, E., Menotta, M., Giacomini, E., Bianchi, M., Ambrosi, G., Giorgi, L. & Magnani, M. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-κB decoy molecules. ACS Nano 4, 2791-2803 (2010). open in new tab
  30. Zhang, X., Meng, L., Lu, Q., Fei, Z. & Dyson, P. J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30, 6041-6047 (2009). open in new tab
  31. Heister, E., Neves, V., Tilmaciu, C., Lipert, K., Beltran, V. S., Coley, H. M., Silva, S. R. P. & McFadden, J. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon N. Y. 47, 2152-2160 (2009). open in new tab
  32. Chaudhuri, P., Soni, S. & Sengupta, S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 21, 25102 (2010). open in new tab
  33. Li, R., Wu, R., Zhao, L., Wu, M., Yang, L. & Zou, H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4, 1399-1408 (2010). open in new tab
  34. Liu, Z., Sun, X., Nakayama-Ratchford, N. & Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50-56 (2007). open in new tab
  35. Kumar, S., Hasumura, T., Nagaoka, Y., Yoshida, Y., Maekawa, T. & Jeymohan, P. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomedicine 8, 2653 (2013). open in new tab
  36. Feazell, R. P., Nakayama-Ratchford, N., Dai, H. & Lippard, S. J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438-9 (2007). open in new tab
  37. Zhang, Z., Yang, X., Zhang, Y., Zeng, B., Wang, S., Zhu, T., Roden, R. B. S., Chen, Y. & Yang, R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12, 4933-4939 (2006). open in new tab
  38. Yang, D., Yang, F., Hu, J., Long, J., Wang, C., Fu, D. & Ni, Q. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem. Commun. (Camb). 7, 4447-4449 (2009). open in new tab
  39. Samorì, C., Ali-Boucetta, C., Sainz, R., Guo, C., Toma, F. M., Fabbro, C., de Ros, T., Prato, M., Kostarelos, K. & Bianco, A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. 46, 1494-1496 (2010). open in new tab
  40. Chen, J., Chen, S., Zhao, X., Kuznetsova, L. V., Wong, S. S. & Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 130, 16778-85 (2008). open in new tab
  41. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X. & Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652-6660 (2008). open in new tab
  42. Sobhani, Z., Dinarvand, R., Atyabi, F., Ghahremani, M. & Adeli, M. Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int. J. Nanomedicine 6, 705-19 (2011).
  43. Hampel, S., Kunze, D., Haase, D., Kramer, K., Rauschenbach, M., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V. & Buchner, D. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3, 175-182 (2008). open in new tab
  44. Wu, W., Li, R., Bian, X., Zhu, Z., Ding, D., Li, X., Jia, Z., Jiang, X. & Hu, Y . Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3, 2740-2750 (2009). open in new tab
  45. Wu, L., Ficker, M., Christensen, J. B., Trohopoulos, P. N. & Moghimi, S. M. Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem. 26, 1198-1211 (2015). open in new tab
  46. Lee, C. C., MacKay, J. A., Fréchet, J. M. J. & Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517-1526 (2005). open in new tab
  47. Svenson, S. & Tomalia, D. A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 64, 102-115 (2012). open in new tab
  48. Tomalia, D. A. Starburstr̀ dendrimers -Nanoscopic supermolecules according to dendritic rules and principles. Macromol. Symp. 101, 243-255 (1996). open in new tab
  49. Hawker, C. J. & Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638-7647 (1990). open in new tab
  50. Nanjwade, B. K., Bechra, H. M., Derkar, G. K., Manvi, F. V. & Nanjwade, V. K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 38, 185-196 (2009). open in new tab
  51. Maraval, V., Pyzowski, J., Caminade, A.-M. & Majoral, J.-P. 'Lego' chemistry for the straightforward synthesis of dendrimers. J. Org. Chem. 68, 6043-6046 (2003). open in new tab
  52. Wu, P., Feldman, A. K., Nugent, A. K., Hawker, C. J., Scheel, A., Voit, B., Pyun, J., Frechet, J. M. J., Sharpless, K. B. & Fokin, V. V. Efficiency and fidelity in a click- chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. 43, 3928-3932 (2004). open in new tab
  53. Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene 'click' chemistry. J. Am. Chem. Soc. 130, 5062- 5064 (2008). open in new tab
  54. Denkewaler, R., Kolc, J. & Lukasavage, W. Macromolecular highly branched homogeneous compound based on lysine units. (1981). open in new tab
  55. de Brabander-van den Berg, E. M. M. & Meijer, E. W. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. English 32, 1308-1311 (1993). open in new tab
  56. Wörner, C. & Mülhaupt, R. Polynitrile-and polyamine-functional poly(trimethylene imine) dendrimers. Angew. Chemie Int. Ed. English 32, 1306-1308 (1993). open in new tab
  57. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J. & Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117-132 (1985). open in new tab
  58. Wu, J., Zhou, J., Qu, F., Bao, P., Zhang, Y., Peng, L., Roeck, J., Ryder, J. & Smith, P. Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem. Commun. 30, 313 (2005). open in new tab
  59. Liu, X., Rocchi, P., Qu, F., Zheng, S., Liang, Z., Gleave, M., Iovanna, J. & Peng, L. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem 4, 1302-1310 (2009). open in new tab
  60. Liu, X., Wu, J., Yammine, M., Zhou, J., Posocco, P., Viel, S., Liu, C., Ziarelli, F., Fermeglia, M., Pricl, S., Victorero, G., Nguyen, C., Erbacher, P., Behr, J.-P. & Peng, L. Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse thymus. Bioconjug. Chem. 22, 2461-2473 (2011). open in new tab
  61. Liu, X., Liu, C., Laurini, E., Posacco, P., Qu, F., Rocchi, P. & Peng, L. Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol. Pharm. 9, 470-481 (2012). open in new tab
  62. Cardona, C. M. & Gawley, R. E. An improved synthesis of a trifurcated newkome- type monomer and orthogonally protected two-generation dendrons. J. Org. Chem. 67, 1411-1413 (2002). open in new tab
  63. Mignani, S., Kazzouli, S. El, Bousmina, M. & Majoral, J.-P. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog. Polym. Sci. 38, 993-1008 (2013). open in new tab
  64. Mignani, S., El Kazzouli, S., Bousmina, M. M. & Majoral, J.-P. Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. Chem. Rev. 114, 1327-1342 (2014). open in new tab
  65. Zhang, W., Jiang, J., Qin, C., Perez, L. M., Parrish, A. R., Safe, S. H. & Simanek, E. E. Triazine dendrimers for drug delivery: evaluation of solubilization properties, activity in cell culture, and in Vivo toxicity of a candidate vehicle. Supramol. Chem. 15, 607-616 (2003). open in new tab
  66. Crampton, H. L. & Simanek, E. E. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym. Int. 56, 489-496 (2007). open in new tab
  67. Lim, J. & Simanek, E. E. Triazine dendrimers as drug delivery systems: From synthesis to therapy. Adv. Drug Deliv. Rev. 64, 826-835 (2012). open in new tab
  68. Haag, R., Sunder, A. & Stumbé, J.-F. An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J. Am. Chem. Soc. 122, 2954-2955 (2000). open in new tab
  69. Feliu, N., Walter, M. V., Montanez, M. I., Kunzmann, A., Hult, A., Nystrom, A., Malkoch, M. & Fadeel, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 33, 1970- 1981 (2012). open in new tab
  70. Sánchez-Nieves, J., Ortega, P., Muñoz-Fernández, M. Á., Gómez, R. & de la Mata, F. J. Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5- trihydroxybenzene. Tetrahedron 66, 9203-9213 (2010). open in new tab
  71. Fuentes-Paniagua, E., Hernandez-Ros, J. M., Sanchez-Milla, M., Camero, M. A., Maly, M., Perez-Serrano, J., Copa-Patino, J. L., Sanchez-Nieves, J., Solireri, J., Gomez, R., Javier de la mata, F. & Bryszewska, M. Carbosilane cationic dendrimers synthesized by thiol-ene click chemistry and their use as antibacterial agents. RSC Adv. 4, 1256-1265 (2014). open in new tab
  72. Türp, D., Nguyen, T.-T.-T. & Mullen, K. Uniquely versatile: nano-site defined materials based on polyphenylene dendrimers. New J. Chem. 36, 282-298 (2012). open in new tab
  73. Jain, N. K. & Gupta, U. Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin. Drug Metab. Toxicol. 4, 1035-1052 (2008). open in new tab
  74. Demanuele, A. & Attwood, D. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 57, 2147-2162 (2005). open in new tab
  75. Albertazzi, L., Storti, B., Marchetti, L. & Beltram, F. Delivery and subcellular targeting of dendrimer-based fluorescent pH sensors in living cells. J. Am. Chem. Soc. 132, 18158-18167 (2010). open in new tab
  76. Nguyen, T. H., Bryant, H., Shapsa, A., Street, H., Mani, V., Fayad, Z. A., Frank, J. A., Tsimikas, S. & Briley-Saebo, K. C. Manganese G8 dendrimers targeted to oxidation- specific epitopes: In vivo MR imaging of atherosclerosis. J. Magn. Reson. Imaging 41, 797-805 (2015). open in new tab
  77. Taratula, O., Schumann, C., Naleway, M. A., Pang, A. J., Chon, K. J. & Taratula, O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm. 10, 3946- 3958 (2013). open in new tab
  78. Liu, C., Liu, X., Rocchi, P., Qu, F., Iovanna, J. L. & Peng, L. Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjug. Chem. 25, 521-532 (2014). open in new tab
  79. Durán-Lara, E., Guzman, L., John, A., Fuentes, E., Alarcon, M., Palomo, I. & Santos, L. S. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur. J. Med. Chem. 69, 601-608 (2013). open in new tab
  80. Liu, J., Gray, W. D., Davis, M. E. & Luo, Y. Peptide-and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2, 307-324 (2012). open in new tab
  81. Kaminskas, L. M., Kelly, B. D., McLeod, V. M., Sberna, G., Owen, D. J., Boyd, B. J. & Porter, C. J. H. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Control. Release 152, 241- 248 (2011). open in new tab
  82. Liu, J., Zhou, J. & Luo, Y. siRNA delivery systems based on neutral cross-linked dendrimers. Bioconjug. Chem. 23, 174-183 (2012). open in new tab
  83. Seo, J. W., Baek, H., Mahakian, L. M., Kusunose, J., Hamzah, J., Ruoslahti, E. & Ferrara, K. W. 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25, 231-239 (2014). open in new tab
  84. Sharma, R., Kottari, N., Chabre, Y. M., Abbassi, L., Shiao, T. C. & Roy, R. A highly versatile convergent/divergent 'onion peel' synthetic strategy toward potent multivalent glycodendrimers. Chem. Commun. 50, 13300-13303 (2014). open in new tab
  85. Sharma, R., Naresh, K., Chabre, Y. M., Rej, R., Saadeh, N. K. & Roy, R. 'Onion peel' dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polym. Chem. 5, 4321 (2014). open in new tab
  86. Kottari, N., Kottari, N., Chabre, Y. M., Shiao, T. C., Rej, R. & Roy, R. Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol-ene and SN2 reactions. Chem. Commun. 50, 1983 (2014). open in new tab
  87. Lowe, A. B. Thiol-ene 'click' reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17-36 (2010). open in new tab
  88. Chauhan, A. S., Svideri, S., Chalasani, K. B., Jain, A. K., Jain, S. K., Jain, N. K. & Diwan, P. V. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release 90, 335-343 (2003). open in new tab
  89. Gupta, U., Agashe, H. B. & Jain, N. K. Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. J. Pharm. Pharm. Sci. 10, 358-367 (2007).
  90. Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh-Lai, M. & Kannan, R. M. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27, 660-669 (2006). open in new tab
  91. Milhem, O. M., Myles, C., McKeown, N. B., Attwood, D. & D'Emanuele, A. Polyamidoamine Starburst® dendrimers as solubility enhancers. Int. J. Pharm. 197, 239-241 (2000). open in new tab
  92. Kolhe, P. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm. 259, 143-160 (2003). open in new tab
  93. Namazi, H. & Adeli, M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials 26, 1175-1183 (2005). open in new tab
  94. Yiyun, C. & Tongwen, X. Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers. Eur. J. Med. Chem. 40, 1188-1192 (2005). open in new tab
  95. Asthana, A., Chauhan, A. S., Diwan, P. V. & Jain, N. K. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled sitespecific delivery of acidic anti- inflammatory active ingredient. AAPS PharmSciTech 6, E536-E542 (2005). open in new tab
  96. Wiwattanapatapee, R., Lomlim, L. & Saramunee, K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J. Control. Release 88, 1-9 (2003). open in new tab
  97. Bhadra, D., Bhadra, S. & Jain, N. K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharm. Sci. 8, 467- 82 (2005). open in new tab
  98. Agrawal, P., Gupta, U. & Jain, N. K. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28, 3349-3359 (2007). open in new tab
  99. Bhadra, D., Yadav, A. K., Bhadra, S. & Jain, N. K. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharm. 295, 221-233 (2005). open in new tab
  100. Bhadra, D., Bhadra, S. & Jain, N. K. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res. 23, 623-633 (2006). open in new tab
  101. Kumar, V. P., Agashe, H., Dutta, T. & Jain, N. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr. Drug Deliv. 4, 11-19 (2007).
  102. Kumar, P. V., Asthana, A., Dutta, T. & Jain, N. K. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target. 14, 546-556 (2006). open in new tab
  103. Beezer, A. E., King, A. S. H., Martin, I. K., Mitchel, J. C., Twyman, L. J. & Wain, C. F. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron 59, 3873-3880 (2003). open in new tab
  104. Cheng, Y., Qu, H., Ma, M., Xu, Z., Xu, P., Fang, Y. & Xu, T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur. J. Med. Chem. 42, 1032-1038 (2007). open in new tab
  105. Ma, M., Cheng, Y., Xu, Z., Xu, P., Qu, H., Fang, Y., Xu, T. & Wen, L. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J. Med. Chem. 42, 93-98 (2007). open in new tab
  106. Yang, H. & Lopina, S. T. Penicillin V-conjugated PEG-PAMAM star polymers. J. Biomater. Sci. Polym. Ed. 14, 1043-1056 (2003). open in new tab
  107. Sideratou, Z., Tsiourvas, D. & Paleos, C. M. Solubilization and release properties of PEGylated diaminobutane poly(propylene imine) dendrimers. J. Colloid Interface Sci. 242, 272-276 (2001). open in new tab
  108. Khandare, J., Kolhe, P., Pillai, O., Kannan, S., Lieh-Lai, M. & Kannan, R. M. Synthesis, cellular transport, and activity of polyamidoamine dendrimer−methylprednisolone conjugates. Bioconjug. Chem. 16, 330-337 (2005). open in new tab
  109. Dutta, T. & Jain, N. K. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta -Gen. Subj. 1770, 681-686 (2007). open in new tab
  110. Dutta, T., Garg, M. & Jain, N. K. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci. 34, 181-189 (2008). open in new tab
  111. Yang, H. & Lopina, S. T. Extended release of a novel antidepressant, venlafaxine, based on anionic polyamidoamine dendrimers and poly(ethylene glycol)-containing semi-interpenetrating networks. J. Biomed. Mater. Res. 72A, 107-114 (2005). open in new tab
  112. Padilla De Jesús, O. L., Ihre, H. R., Gagne, L., Fréchet, J. M. J. & Szoka Jr, F. C. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem. 13, 453-461 (2002). open in new tab
  113. Lee, C. C., Gillies, E. R., Fox, M. E., Guillaudeu, S. J., Frechet, J. M. J., Dy, E. E. & Szoka, F. C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U. S. A. 103, 16649-54 (2006). open in new tab
  114. Zhu, S., Hong, M., Zhang, L., Tang, L., Jiang, Y. & Pei, Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm. Res. 27, 161-174 (2010). open in new tab
  115. Fu, F., Wu, Y., Zhu, J., Wen, S., Shen, M. & Shi, X. Multifunctional lactobionic acid- modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl. Mater. Interfaces 6, 16416-16425 (2014). open in new tab
  116. Gurdag, S., Khandare, J., Stapels, S., Matherly, L. H. & Kannan, R. M. Activity of dendrimer−methotrexate conjugates on methotrexate-sensitive and -resistant cell Lines. Bioconjug. Chem. 17, 275-283 (2006). open in new tab
  117. Thomas, T. P., Majoros, I. J., Kotlyar, A., Kukowska-Latallo, J. F., Bielinska, A., Myc, A. & Bakar Jr, J. R. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem. 48, 3729-3735 (2005). open in new tab
  118. Neerman, M. F., Chen, H.-T., Parrish, A. R. & Simanek, E. E. Reduction of drug toxicity using dendrimers based on melamine. Mol. Pharm. 1, 390-393 (2004). open in new tab
  119. Lim, J., Chouai, A., Lo, S.-T., Liu, W., Sun, X. & Simanek, E. E. Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. Bioconjug. Chem. 20, 2154-2161 (2009). open in new tab
  120. Wandersman, C. & Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58, 611-647 (2004). open in new tab
  121. Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413-51 (2007). open in new tab
  122. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637 (2010). open in new tab
  123. Roosenberg II, J., Lin, Y.-M., Lu, Y. & Miller, M. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7, 159-197 (2000). open in new tab
  124. Wittman, M. D., Halcomb, R. L. & Danishefsky, S. J. On the conversion of biologically interesting amines to hydroxylamines. J. Org. Chem. 55, 1981-1983 (1990). open in new tab
  125. Hu, J. & Miller, M. J. A new method for the synthesis of N.epsilon.-acetyl-N.epsilon.- hydroxy-L-lysine, the iron-binding constituent of several important siderophores. J. Org. Chem. 59, 4858-4861 (1994). open in new tab
  126. Bergeron, R. J. & Phanstiel, O. The total synthesis of nannochelin: a novel cinnamoyl hydroxamate-containing siderophore. J. Org. Chem. 57, 7140-7143 (1992). open in new tab
  127. Okujo, N., Sakakibara, Y., Yoshida, T. & Yamamoto, S. Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore fromAcinetobacter haemolyticus. Biometals 7, 170-176 (1994). open in new tab
  128. Buckley, G. M., Pattenden, G. & Whiting, D. A. New synthetic probes of the iron transport system of Paracoccus denitrificans. Tetrahedron 50, 11781-11792 (1994). open in new tab
  129. Shanzer, A., Libman, J., Lifson, S. & Felder, C. E. Origin of the iron(III) binding and conformational properties of enterobactin. J. Am. Chem. Soc. 108, 7609-7619 (1986). open in new tab
  130. Marinez, E. R., Salmassian, E. K., Lau, T. T. & Gutierrez, C. G. Enterobactin and enantioenterobactin. J. Org. Chem. 61, 3548-3550 (1996). open in new tab
  131. Meyer, M., Telford, J. R., Cohen, S. M., White, D. J., Xu, J. & Raymond, K. N. High- yield synthesis of the enterobactin trilactone and evaluation of derivative siderophore analogs. J. Am. Chem. Soc. 119, 10093-10103 (1997). open in new tab
  132. Ohkanda, J. & Katoh, A. N-hydroxyamide-containing heterocycles. part 4. synthesis and FeIII-chelating properties of novel hexadentate ligands composed of N-hydroxy- 2(1H)-pyrazinone, amino acid residues, and Tris(2-aminoethyl)amine. J. Org. Chem. 60, 1583-1589 (1995). open in new tab
  133. Ramurthy, S. & Miller, M. J. Framework-reactive siderophore analogs as potential cell-selective drugs. design and syntheses of trimelamol-based iron chelators. J. Org. Chem. 61, 4120-4124 (1996). open in new tab
  134. Yanping, X. & Miller, M. J. Total syntheses of mycobactin analogues as potent antimycobacterial agents using a minimal protecting group strategy. J. Org. Chem. 63, 4314-4322 (1998).
  135. Watanabe, N. A., Nagasu, T., Katsu, K. & Kitoh, K. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother. 31, 497-504 (1987). open in new tab
  136. Kim, M. Y., Oh, J. I., Paek, K. S., Kim, Y. Z., Kim, I. C. & Kwak, J. H. In vitro and in vivo activities of LB10522, a new catecholic cephalosporin. Antimicrob. Agents Chemother. 40, 1825-31 (1996). open in new tab
  137. Maejima, T., Inoue, M. & Mitsuhashi, S. In vitro antibacterial activity of KP-736, a new cephem antibiotic. Antimicrob. Agents Chemother. 35, 104-10 (1991). open in new tab
  138. Ohi, N., Aoki, B., Shinozaki, T., Moro, K., Noto, T., Nehasi, T., Okazaki, H. & Hatsunaga, T. Semisynthetic beta-lactam antibiotics. II Effect on antibacterial activity of ureido N-substituents in the 6-[(R)-2-[3-(3,4-dihydroxybenzoyl)-1-ureido]- 2-phenylacetamido]penicillanic acid. J. Antibiot. 39, 230-241 (1986). open in new tab
  139. Zahner, H., Diddens, H., Keller-Schierlein, W. & Nageli, H. U. Some experiments with semisynthetic sideromycins. Jpn. J. Antibiot. 30, S201-S206 (1977).
  140. Ji, C. & Miller, M. J. Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg. Med. Chem. 20, 3828-3836 (2012). open in new tab
  141. Ji, C. & Miller, M. J. Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. BioMetals 28, 541-551 (2015). open in new tab
  142. Reissmann, S. Cell penetration: scope and limitations by the application of cell- penetrating peptides. J. Pept. Sci. 20, 760-784 (2014). open in new tab
  143. Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 (1997). open in new tab
  144. Derossit, D., Joliott, M. H., Chassaingl, G. & Prochiantztn, M. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450 (1994).
  145. Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S. & Jin, F. Recent progress of cell- penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 174, 126-136 (2014). open in new tab
  146. Ruczynski, J., Wierzbicki, P. M., Kogut-Wierzbicka, M., Mucha, P., Siedlicka- Kroplewska, K. & Rekowski, P. Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells. Folia Histochem. Cytobiol. 52, 257-269 (2015). open in new tab
  147. Kawczyński, M. T., Kreczko-Kurzawa, J. & Maćkiewicz, Z. Peptydy penetrujące : rodzaje i mechanizmy przenikania przez błony komórkowe. Wiadomości Chem. 69, 9-33 (2015).
  148. Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A. & Wender, P. A. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506-9507 (2004). open in new tab
  149. Fernández-Carneado, J., Kogan, M. J., Castel, S. & Giralt, E. Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of γ-zein. Angew. Chemie Int. Ed. 43, 1811-1814 (2004). open in new tab
  150. Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today 17, 850-860 (2012). open in new tab
  151. Lin, Y. Z., Yao, S. Y., Veach, R. A., Torgerson, T. R. & Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 270, 14255-14258 (1995). open in new tab
  152. Hällbrink, M., Floren, A., Elmquist, A., Pooga, M., Batfai, T. & Langel, U. Cargo delivery kinetics of cell-penetrating peptides. Biochim. Biophys. Acta -Biomembr. 1515, 101-109 (2001). open in new tab
  153. Vocero-Akbani, A. M., Heyden, N. V, Lissy, N. A., Ratner, L. & Dowdy, S. F. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5, 29-33 (1999). open in new tab
  154. Wadia, J. & Dowdy, S. Modulation of cellular function by TAT mediated transduction of full length proteins. Curr. Protein Pept. Sci. 4, 97-104 (2003). open in new tab
  155. Drin, G., Déméné, H., Temsamani, J. & Brasseur, R. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40, 1824-1834 (2001). open in new tab
  156. Drin, G., Cottin, S., Blanc, E., Rees, A. R. & Temsamani, J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278, 31192-201 (2003). open in new tab
  157. Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao, J.-X., Xu, X.-J., Wiesenfeld-Hallin, Z., Hokfelt, T. & Langel, U. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857-861 (1998). open in new tab
  158. Astriab-Fisher, A., Sergueev, D., Fisher, M., Shaw, B. R. & Juliano, R. L. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19, 744-754 (2002). open in new tab
  159. Sparr, C., Purkayastha, N., Kolesińska, B., Gengenbacher, M., Amulic, B., Matuschewski, K., Seebach, D. & Kamena, F. Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell- penetrating peptide octaarginine. Antimicrob. Agents Chemother. 57, 4689-98 (2013). open in new tab
  160. Purkayastha, N., Capone, S., Beck, A. K., Seebach, D., Leeds, J., Thompson, K. & Moser, H. E. Antibacterial activity of enrofloxacin and ciprofloxacin derivatives of β - octaarginine. Chem. Biodivers. 12, 179-193 (2015). open in new tab
  161. Janout, V., Lanier, M. & Regen, S. L. Molecular Umbrellas. J. Am. Chem. Soc. 118, 1573-1574 (1996). open in new tab
  162. Janout, V. & Regen, S. L. Bioconjugate-based molecular umbrellas. Bioconjug. Chem. 20, 183-192 (2009). open in new tab
  163. Ge, D., Wu, D., Wang, Z., Shi, W., Wu, T., Zhang, A., Hong, S., Wang, J., Zhang, Y. & Ren, L. Cellular uptake mechanism of molecular umbrella. Bioconjug. Chem. 20, 2311-2316 (2009). open in new tab
  164. Mehiri, M., Chen, W.-H., Janout, V. & Regen, S. L. Molecular umbrella transport: exceptions to the classic size/lipophilicity rule. J. Am. Chem. Soc. 131, 1338-1339 (2009). open in new tab
  165. Janout, V., Di Giorgio, C. & Regen, S. L. Molecular umbrella-assisted transport of a hydrophilic peptide across a phospholipid membrane. J. Am. Chem. Soc. 122, 2671- 2672 (2000). open in new tab
  166. Janout, V., Zhang, L., Staina, I. V, Di Giorgio, C. & Regen, S. L. Molecular umbrella- assisted transport of glutathione across a phospholipid membrane. J. Am. Chem. Soc. 123, 5401-5406 (2001). open in new tab
  167. Janout, V., Jing, B. & Regen, S. L. Molecular umbrella-assisted transport of thiolated AMP and ATP across phospholipid bilayers. Bioconjug. Chem. 13, 351-356 (2002). open in new tab
  168. Janout, V. & Regen, S. L. A needle-and-thread approach to bilayer transport: permeation of a molecular umbrella−oligonucleotide conjugate across a phospholipid membrane. J. Am. Chem. Soc. 127, 22-23 (2004). open in new tab
  169. Janout, V., Cline, L. L., Feuston, B. P., Klein, L., O'Brien, A., Tucker, T., Yuan, Y., O'Neill-Davis, L. A., Peiffer, R. L., Nerurkar, S. S., Jadhav, V., Tellers, D. M. & Regen, S. L. Molecular umbrella conjugate for the ocular delivery of siRNA. Bioconjug. Chem. 25, 197-201 (2014). open in new tab
  170. Janout, V., Bienvenu, C., Schell, W., Perfect, J. R. & Regen, S. L. Molecular umbrella- amphotericin B conjugates. Bioconjug. Chem. 25, 1408-1411 (2014). open in new tab
  171. Jing, B., Janout, V. & Regen, S. L. Fully detachable molecular umbrellas as peptide delivery agents. Bioconjug. Chem. 14, 1191-1196 (2003). open in new tab
  172. Janout, V., Schell, W. A., Thevenin, D., Yu, Y., Perfect, F. R. & Regen, S. L. Taming amphotericin B. Bioconjug. Chem. 26, 2021-2024 (2015). open in new tab
  173. Cline, L. L., Janout, V., Fisher, M., Juliano, R. L. & Regen, S. L. A molecular umbrella approach to the intracellular delivery of small interfering RNA. Bioconjug. Chem. 22, 2210-2216 (2011). open in new tab
  174. Janout, V., Lanier, M. & Regen, S. L. Design and synthesis of molecular umbrellas. J. Am. Chem. Soc. 119, 640-647 (1997). open in new tab
  175. Okahata, Y., Ando, R. & Kunitake, T. Catalytic hydrolysis of p -nitrophenyl esters in the presence of representative ammonium aggregates. Specific activation of a cholesteryl nucleophile bound to a dialkylammonium bilayer membrane. Bull. Chem. Soc. Jpn. 52, 3647-3653 (1979). open in new tab
  176. Senter, P. D., Pearce, W. E. & Greenfield, R. S. Development of a drug-release strategy based on the reductive fragmentation of benzyl carbamate disulfides. J. Org. Chem. 55, 2975-2978 (1990). open in new tab
  177. Levine, M. N. & Raines, R. T. Trimethyl lock: a trigger for molecular release in chemistry, biology, and pharmacology. Chem. Sci. 3, 2412 (2012). open in new tab
  178. Thanassi, J. W. & Cohen, L. A. The conservation of oxidative energy in phosphate- free systems. Formation of acyl anhydrides via the oxidation of hydroquinone monocarboxylic esters. Biochim. Biophys. Acta -Bioenerg. 172, 389-398 (1969). open in new tab
  179. Ji, C., Miller, P. A. & Miller, M. J. Syntheses and antibacterial activity of N -acylated ciprofloxacin derivatives based on the trimethyl lock. ACS Med. Chem. Lett. 6, 707- 710 (2015). open in new tab
  180. Nicolaou, M. G., Yuan, C.-S. & Borchardt, R. T. Phosphate prodrugs for amines utilizing a fast intramolecular hydroxy amide lactonization. J. Org. Chem. 61, 8636- 8641 (1996). open in new tab
  181. Amsberry, K. L. & Borchardt, R. T. The lactonization of 2'-hydroxyhydrocinnamic acid amides: a potential prodrug for amines. J. Org. Chem. 55, 5867-5877 (1990). open in new tab
  182. Carpino, L. A., Triolo, S. A. & Berglund, R. A. Reductive lactonization of strategically methylated quinone propionic acid esters and amides. J. Org. Chem. 54, 3303-3310 (1989). open in new tab
  183. Ilies, M. A., Seitz, W. A., Johnson, B. H., Ezell, E. L., Miller, A. L., Thompson, E. B. & Balaban, A. T. Lipophilic pyrylium salts in the synthesis of efficient pyridinium-based cationic lipids, gemini surfactants, and lipophilic oligomers for gene delivery. J. Med. Chem. 49, 3872-3887 (2006). open in new tab
  184. Wagner, R. B. & Moore, J. A. The rearrangement of α,α'-dibromoketones. J. Am. Chem. Soc. 72, 974-977 (1950). open in new tab
  185. Nishimura, T., Yamada, K., Takebe, T., Yokoshima, S. & Fukuyama, T. (1-Nosyl-5- nitroindol-3-yl)methyl ester: a novel protective group for carboxylic acids. Org. Lett. 10, 2601-2604 (2008). open in new tab
  186. Chadwick, J., Jones, M., Mercer, A. E., Stocks, P. A., Ward, S. A., Park, B. K. & O'Neill, P. M. Design, synthesis and antimalarial/anticancer evaluation of spermidine linked artemisinin conjugates designed to exploit polyamine transporters in Plasmodium falciparum and HL-60 cancer cell lines. Bioorg. Med. Chem. 18, 2586-2597 (2010). open in new tab
  187. Skwarecki, A. S., Milewski, S., Schielmann, M. & Milewska, M. J. Antimicrobial molecular nanocarrier-drug conjugates. Nanomed. Nanotechnol. 12, 2215-2240 (2016). open in new tab
  188. Skwarecki A. S., Skarbek, K., Martynow D., Serocki M., Milewska M. J. & Milewski S. Molecular umbrellas modulate the selective toxicity of polyene macrolide antifungals. W przygotowaniu do druku. open in new tab
  189. Konferencje naukowe Prezentacje ustne:
  190. Skwarecki, A. S. Synthesis of disubstituted 1,3,4,9-tetrahydropyrano-[3,4-b]indole-1-acetic acids derivatives. BioTech 2013 (2013). open in new tab
  191. Artykuły konferencyjne:
  192. Skwarecki, A. S. Synthesis of disubstituted 1,3,4,9-tetrahydropyrano-[3,4-b]indole-1-acetic acids derivatives. PhD Interdisciplinary Journal 1, 75-78 (2013). open in new tab
  193. Sesje posterowe: Skwarecki, A. S., Milewska, M. J. Parasole Molekularne -potencjalne transportery substancji aktywnych do komórek grzybowych. 58 Zjazd Polskiego Towarzystwa Chemicznego w Gdańsku. Gdańsk (2015). open in new tab
  194. Skwarecki, A. S., Milewska, M. J., Milewski, S., Wiśniewska, A., Schielmann, M., Kawczyński, M. T. Synteza dipeptydów o aktywności przeciwgrzybowej zawierających inhibitor dehydrogenazy homoserynowej. 58 Zjazd Polskiego Towarzystwa Chemicznego w Gdańsku. Gdańsk (2015). open in new tab
  195. Skwarecki, A. S., Skarbek, K., Koperkiewicz, D., Milewska, M. J. Koniugaty parasoli molekularnych z makrolidami polienowymi. 59 Zjazd Polskiego Towarzystwa Chemicznego w Poznaniu. Poznań (2016). open in new tab
Verified by:
Gdańsk University of Technology

seen 184 times

Recommended for you

Meta Tags