Techniki chromatografii cieczowej, stosowane w analityce technicznej procesów hydrolizy biomasy ligno-celulozowej - BMLC. Przegląd - Publication - Bridge of Knowledge

Search

Techniki chromatografii cieczowej, stosowane w analityce technicznej procesów hydrolizy biomasy ligno-celulozowej - BMLC. Przegląd

Abstract

Obróbka wstępna biomasy ligno-celulozowej (BMLC) realizowana z zastosowaniem kwasów, zasad oraz enzymów jest ważnym etapem przetwarzania surowca przed procesem fermentacji. Podczas hydrolizy złożone struktury biopolimerów: celulozy, hemicelulozy i ligniny rozpadają się do związków o małej masie cząsteczkowej (cukry, oligosacharydy, związki fenolowe). Jednak nie jest to proces łatwy i wymaga doboru odpowiednich warunków procesu, między innymi rodzaj i stężenie katalizatora, temperatura procesu, czas, ciśnieni). Do określenia składu produktów głównych i ubocznych oraz wydajności produktów w zależności od warunków prowadzonego procesu konieczne jest wykorzystanie pewnych i sprawdzonych metod analitycznych. Odpowiednio dobrana analityka techniczna pozwala również monitorować przebieg procesu hydrolizy w reaktorze. W niniejszej pracy przedstawiono przegląd metod analitycznych wykorzystujących techniki chromatografii cieczowej do analizy technicznej produktów hydrolizy.

Cite as

Full text

download paper
downloaded 2110 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Camera Separatoria no. 9, pages 92 - 105,
ISSN: 2083-6392
Language:
Polish
Publication year:
2017
Bibliographic description:
Glinka M., Łukajtis R., Nowak P., Kamiński M.: Techniki chromatografii cieczowej, stosowane w analityce technicznej procesów hydrolizy biomasy ligno-celulozowej - BMLC. Przegląd// Camera Separatoria. -Vol. 9., nr. 2 (2017), s.92-105
Bibliography: test
  1. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, 83 (2002) 1-11. doi: 10.1016/S0960-8524(01)00212-7. open in new tab
  2. P. Kumar, DM. Barrett, MJ. Delwiche, P. Stroeve, Methods for pre-treatment of lignocellulosic Biomass for efficient hydrolysis and biofuel production, Industrial & Engineering Chemistry Research, 48 (2009) 3713-3729. doi: 10.1021/ie801542g. open in new tab
  3. J. Wang, W. Wan, Influence of Ni2+ concentration on biohydrogen production, Bioresource Technology, 99 (2008) 8864-8. doi: 10.1016/j.biortech.2008.04.052. open in new tab
  4. N. Azbar, Ft. Çetinkaya Dokgöz, T. Keskin, KS. Korkomaz, HM. Syed, Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions, International Journal of Hydrogen Energy, 34 (2009) 7441-7447. doi: 10.1016/j.ijhydene.2009.04.032. open in new tab
  5. R. Kothari, DP. Singh, VV. Tyagi, SK. Tyagi, Fermentative hydrogen production -An alternative clean energy source, Renewable and Sustainable Energy Reviews, 16 (2012) 2337-2346. doi: 10.1016/j.rser.2012.01.002. open in new tab
  6. JY. Zhu, X. Pan, RS. Zalesny, Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance, Applied Microbiology and Biotechnology, 87 ( 2010), 847-857. doi: 10.1007/s00253-010-2654-8. open in new tab
  7. J. Zhu, Y. Li, X. Wu, C. Miller, P. Chen, R. Ruan, Swine manure fermentation for hydrogen production, Bioresource Technology, 100 (2009) 5472-5477. doi: 10.1016/j.biortech.2008.11.045. open in new tab
  8. K. Karimi, G. Emtiazi, MJ. Taherzadeh, Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme and Microbial Technology, 40 (2006) 138-144. doi: 10.1016/j.enzmictec.2005.10.046. open in new tab
  9. R. Lee, PJ. Weimer, WH. Zyl, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, 66 (2002) 506-577.
  10. DF. Correa, HL. Beyer, HP. Possingham, SR. Hall, PM. Schenk, Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels, Renewable and Sustainable Energy Reviews, 74 (2017) 1131-1146. doi: doi.org/10.1016/j.rser.2017.02.068. open in new tab
  11. F. Saladini, N. Patrizi, FM. Pulselli, N. Marchettini, S. Bastianoni, Guidelines for emergy evaluation of first, second and third generation biofuels, Renewable Sustainable Energy Reviews, 66 (2016) 221-227. doi: 10.1016/j.rser.2016.07.073. open in new tab
  12. DP. Singh, RK. Trvedi, Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel, International Journal of ChemTech Research, 5 (2013) 727-734.
  13. F. Carvalheiro, LC. Duarte, FM. Girio, Hemicellulose biorefineries: A review on biomass pretreatments, Journal of Scientific & Industrial Research (India), 67 (2008) 849-864. open in new tab
  14. MJ. Taherzadeh, K. Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review, International Journal of Molecular Sciences, 9 (2008) 1621-1651. doi: 10.3390/ijms9091621. open in new tab
  15. R. Kumar, CE. Wyman, Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies, Biotechnology Progress, 25 (2002) 302-14. doi: 10.1002/btpr.102. open in new tab
  16. X-Z. Zhang, N. Sathitsuksanoh, Y-HP. Zhang, Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase, Bioresource Technology, 101 (2010) 5534-5535. doi: 10.1016/j.biortech.2010.01.152. open in new tab
  17. RN. Gurram, S. Datta, YJ. Lin, SW. Snyder, TJ. Menkhaus, Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies, Bioresource Technology, 102 (2011) 7850-7859. doi: 10.1016/j.biortech.2011.05.043. open in new tab
  18. Q. Qing, B. Yang, CE. Wyman, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresource Technology, 101 (2010) 9624-9630. doi: 10.1016/j.biortech.2010.06.137. open in new tab
  19. SI. Mhlongo, R. Den Haan, M. Viljoen-Bloom, Van Zyl WH., Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance, Enzyme and Microbial Technology, 81 (2015) 16-22 .doi: 10.1016/j.enzmictec.2015.07.005. open in new tab
  20. K. Chen, S. Hao, H. Lyu, G. Luo, S. Zhang, J. Chen, Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass, Separation and Purification Technology, 172 (2017) 100-106. doi: 10.1016/j.seppur.2016.08.004. open in new tab
  21. Z. Fuzfai, I. Boldizsar, I. Molnar-Perl, Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl-oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry, Journal of Chromatogrphy A., 1177 (2008) 183-189. doi: 10.1016/j.chroma.2007.11.023. open in new tab
  22. R. Xie, M. Tu, Y. Wu, S. Adhikari, Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate, Bioresource Technology, 102 (2011) 4938-4942. doi: 10.1016/j.biortech.2011.01.050. open in new tab
  23. G. Lodi, LA. Pellegrini, A. Alivverti, B. Rivas Torres, M. Morbidelli, Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography, Journal of Chromatogrphy A, (2017) 25- 36. doi: 10.1016/j.chroma.2017.03.016. open in new tab
  24. R. Datar, J. Huang, PC. Maness, A. Mohagheghi, S. Czernik, E. Chornet, Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process, Internationa Journal of Hydrogen Energy, 32 (2007) 14245-14251. doi: 10.1016/j.ijhydene.2011.06.102. open in new tab
  25. Y. Su, R. Du, H. Guo, M. Cao, Q. Wu, R. Su, Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components, Food Bioproduction Processing, 94 (2015) 322-330. doi: 10.1016/j.fbp.2014.04.001. open in new tab
  26. B. Kaya, S. Irmak, A. Hasanoglu, O. Erbatur, Evaluation of various carbon materials supported Pt catalyts for aqueous-phase reforming of lignocellulosic biomass hydrolysate, International Journal of Hydrogen Energy, 39 (2014) 10135-10140. doi: 10.1016/j.ijhydene.2014.04.180. open in new tab
  27. A. Wei, X. Zhang, D. Wei, G. Chen, Q. Wu, ST. Yang, Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides, Journal of Industrial Microbiology and Biotechnology, 36 (2009) 1383-1389. doi: 10.1007/s10295-009-0624-x. open in new tab
  28. ISM. Rafiqul, AM. Mimi Sakinah, Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production, Chemical Engeering Science, 71 (2012) 431-437. doi: 10.1016/j.ces.2011.11.007. open in new tab
  29. HB. Klinke, BK. Ahring, AS. Schmidt, AB. Thomsen, Characterization of degradation products from alkaline wet oxidation of wheat straw, Bioresource Technology, 82 (2002) 15-26.
  30. A. Gautam, TJ. Menkhaus, Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate, Journal of Membrane Science, 451 (2014) 93 -107. doi: 10.1590/0104-6632.20170341s20150082. open in new tab
  31. K. Ziemiński, I. Romanowska, M. Kowalska, Enzymatic pretreatment of lignocellulosic wastes to improve biogas production, Waste Management, 32 (2012) 1131-7. doi: 10.1016/j.wasman.2012.01.016. open in new tab
  32. L. Coulier, Y. Zha, R. Bas, PJ. Punt, Analysis of oligosaccharides in lignocellulosic biomass hydrolysates by high-performance anion-exchange chromatography coupled with mass spectrometry (HPAEC-MS), Bioresource Technology, 133 (2013) 221-231. doi: 10.1016/j.biortech.2013.01.085. open in new tab
  33. CF. Crespo, M. Badshah, MT. Alvarez, B. Mattiasson, Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis, Bioresource Technology, 103 (2012) 186-191. doi: 10.1016/j.biortech.2011.10.020. open in new tab
  34. R. Bakker, A. Zeelend, D. Sanchez-Garcia, A. Punt, G. Eggink, Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment, Bioresource Technology, 181 (2015) 114-123. doi: 10.1016/j.biortech.2015.01.033. open in new tab
  35. MKD. Rambo, Fl. Schmidt, MMC, Ferreira, Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities, Talanta, 144 (2015) 696-703. doi: 10.1016/j.talanta.2015.06.045 open in new tab
  36. F. Mechmech, H. Chadjaa, M. Rahni, M. Marinova, N. Ben Akacha, F. Gargouri, Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal, Bioresource Technology, 192 (2015) 287-295. doi: 10.1016/j.biortech.2015.05.012. open in new tab
  37. A. Boussaid, Y. Cai, J. Robinson, DJ. Gregg, Q. Nguyen, JN. Saddler, Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark, Biotechnology Progress, 887 (2017) 887-892. doi: 10.1021/bp010092b. open in new tab
  38. A. Barakat, F. Monlau, JP. Steyer, H. Carrere, Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production, Bioresource Technology, 104 (2012) 90-9. doi: 10.1016/j.biortech.2011.10.060. open in new tab
  39. Z. Wang, J. Zhuang, X. Wang, Z. Li, Y. Fu, M. Qin, Limited adsorption selectivity of active carbon toward non-saccharide compounds in lignocellulose hydrolysate, Bioresource Technology, 208 (2016) 195-199. doi: 10.1016/j.biortech.2016.02.072. open in new tab
  40. B. Wang, YH. Rezenom, K-C. Cho, JL. Tran, DG. Lee, DH. Russell, Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates, Bioresource Technology, 161 (2014) 162-170. doi: 10.1016/j.biortech.2014.02.133. open in new tab
  41. PR. Waghmare, AA. Kadam, GD. Saratale, SP. Govindwar, Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation, Bioresource Technology, 168 (2014) 136-41. doi: 10.1016/j.biortech.2014.02.099. open in new tab
  42. TLC Visualization Reagents., EMD Chem (2014)
  43. J. Heinonen, T. Sainio, Electrolyte exclusion chromatography using a multi-column recycling process: Fractionation of concentrated acid lignocellulosic hydrolysate, Separation and Purification Technology, 129 (2014) 137-149. doi: 10.1016/j.seppur.2014.03.031. open in new tab
  44. B. Rafał, Corona CAD -nowa jakość w detekcji HPLC, Lab., (2010) 7-8.
  45. L-P. Yu., JE. Rollings, Quantitative branching of linear and branched polysaccharide mixtures by size exclusion chromatography and on-line low-angle laser light scattering detection, Journal of Applied Polymer Science, 35 (1988) doi: 10.1002/app.1988.070350420. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 176 times

Recommended for you

Meta Tags