The Application of Granulated Expanded Glass Aggregate with Cement Grout as an Alternative Solution for Sub-Grade and Frost-Protection Sub-Base Layer in Road Construction - Publication - Bridge of Knowledge

Search

The Application of Granulated Expanded Glass Aggregate with Cement Grout as an Alternative Solution for Sub-Grade and Frost-Protection Sub-Base Layer in Road Construction

Abstract

The purpose of the research was to assess the possibility of using granulated expanded glass aggregate (GEGA) with cement grout as a replacement of a sub-grade and frost-protection layer, made of natural fine aggregates (NATU), stabilized with a hydraulic binder. Instead of traditional parts of the road construction, such as the sub-grade and frost-protection layer with the application of fine aggregate, stabilized with cement, the authors propose only one layer, made of lightweight water-permeable material, containing GEGA with a grain size from 8 to 11.2 mm. In the article the authors present the physical properties of the materials, applied for the road layers, the properties of the fine aggregate, stabilized with cement, and those of the cement composite with GEGA as an alternative solution. The laboratory test results of fine aggregates, stabilized with cement and of cement composites with GEGA, are presented. Porosity, volume density, compressive strength, and frost resistance are being researched. The results of those tests are meant to play an essential role in designing the thickness of road layers. Dierent types of pavement structure (asphalt and concrete) and dierent values of road load are being considered in the given work. The paper is concluded with considerations on an innovative solution, involving the use of ecological materials.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 52 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 12, pages 1 - 19,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Kurpińska M., Grzyl B., Pszczoła M., Kristowski A.: The Application of Granulated Expanded Glass Aggregate with Cement Grout as an Alternative Solution for Sub-Grade and Frost-Protection Sub-Base Layer in Road Construction// Materials -Vol. 12,iss. 21 (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12213528
Bibliography: test
  1. Karim, Y.; Khan, Z.; Alsoufi, M.S.; Yunus, M. A Review on Recycled, Aggregates for the Construction Industry. Am. J. Civ. Eng. Archit. 2016, 4, 27-33. [CrossRef] open in new tab
  2. A Sustainable Aggregates Industry for a Sustainable Europe. Available online: http://www.uepg.eu/ (accessed on 7 May 2019). open in new tab
  3. Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 2016, 9, 701. [CrossRef] [PubMed] open in new tab
  4. Najduchowska, M.; Rozycka, K.; Rolka, G. Ocena możliwości wykorzystania stłuczki szklanej w przemyśle budowlanym w aspekcie jej wpływu naśrodowisko naturalne. Prace ICiMB 2014, 17, 1-10. (In Polish) open in new tab
  5. Sikora, P.; Horszczaruk, E.; Skoczylas, K.; Rucinska, T. Thermal properties of cement mortars containing waste glass aggregate and nanosilica. Procedia Eng. 2017, 196, 159-166. [CrossRef] open in new tab
  6. Du, H.; Tan, K.H. Concrete with recycled glass as fine aggregates. ACI Mater. J. 2014, 111, 47-58. open in new tab
  7. Chung, S.-Y.; Elrahman, M.; Sikora, P.; Rucinska, T.; Horszczaruk, E.; Stephan, D. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregate on the Material Properties of Lightweight Concrete Using Image-Based Approaches. Materials 2017, 10, 1354. [CrossRef] [PubMed] open in new tab
  8. Lo, T.Y.; Tang, W.C.; Cui, H.Z. The effects of aggregate properties on lightweight concrete. Build. Environ. 2007, 42, 3025-3029. [CrossRef] open in new tab
  9. Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_ statistics (accessed on 7 May 2019). open in new tab
  10. Kurpińska, M.; Ferenc, T. Application of lightweight cement composite with foamed glass aggregate in shell structures. Shell Struct. Theory Appl. 2018, 4, 549-552. open in new tab
  11. Jamshidi, A.; Kurumisawa, K.; Nawa, T.; Igarashi, T. Performance of pavements incorporating waste glass: The current state of the art. Renew. Sustain. Energy 2016, 64, 211-236. [CrossRef] open in new tab
  12. Ganjian, E.; Jalull, G.; Sadeghi-Pouya, H. Using waste materials and by-products to produce concrete paving blocks. Constr. Build. Mater. 2015, 77, 270-275. [CrossRef] open in new tab
  13. Arnold, G.; Werkmeister, S.; Alabaster, D. The effect of adding recycled glass on the performance of base course aggregate. N. Z. Transp. Agency Res. Rep. 2008, 351, 40.
  14. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 2013, 40, 1168-1173. [CrossRef] open in new tab
  15. Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234-247. [CrossRef] open in new tab
  16. Domagala, L. Structural lightweight aggregate concrete. In Civil Engineering; Cracow University of Technology: Cracow, Poland, 2014. (In Polish)
  17. Šeputytė-Jucikė, J.; Sinica, M. The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete. Eng. Struct. Technol. 2016, 8, 31-40. [CrossRef] open in new tab
  18. Gonawala, R.J.; Khapre, S.; Kumar, R.; Chauhan, K.A. Suitability of EAF slag and GGBFS mix as cementitious base/sub-base layer for low volume road construction. Int. J. Geotech. Eng. 2019. [CrossRef] open in new tab
  19. Biswal, D.R.; Sahoo, U.C.; Dash, S.R. Mechanical characteristics of cement stabilised granular lateritic soils for use as structural layer of pavement. Road Mater. Pavement Des. 2018. [CrossRef] open in new tab
  20. Canakci, H.; Güllü, M.I.; Dwle, K. Effect of Glass Powder Added Grout for Deep Mixing of Marginal Sand with clay. Arab. J. Sci. Eng. 2018, 43, 1583-1595. [CrossRef] open in new tab
  21. Del Rey, I.; Ayuso, J.; Barbudo, A.; Galvín, A.P.; Agrela, F.; de Brito, J. Feasibility study of cement-treated 0-8 mm recycled aggregates from construction and demolition waste as road base layer. Road Mater. Pavement Des. 2015, 17, 678-692. [CrossRef] open in new tab
  22. Poutos, K.H.; Alani, A.M.; Walden, P.J.; Sangha, C.M. Relative temperature changes within concrete made with glass aggregates. Constr. Build. Mater. 2006, 22, 557-565. [CrossRef] open in new tab
  23. Park, S.B.; Lee, B.C.; Kim, J.H. Studies on mechanical properties of concrete containing waste glass aggregates. Cement Concrete Res. 2004, 34, 2181-2189. [CrossRef] open in new tab
  24. Wang, H.; Huang, W. Durability of self-consolidating concrete using waste LCD glass. Constr. Build. Mater. 2010, 24, 1008-1013. [CrossRef] open in new tab
  25. Liu, S.; Wang, S.; Tang, W.; Hu, N.; Wei, J. Inhibitory Effect of Waste Glass Powder on ASR expansion induced by waste glass aggregate materials. Materials 2015, 8, 6849-6862. [CrossRef] [PubMed] open in new tab
  26. Rashad, A.M. Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Const. Build. Mater. 2014, 72, 340-357. [CrossRef] open in new tab
  27. Xi, Y.; Li, Y.; Xie, Z.; Lee, J.S. Utilization of solid wastes (waste glass or rubber particles) as aggregate in concrete. In Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 20-21 May 2004.
  28. Shayan, A.; Xu, A. Performance of glass powder as a pozzolanic materials in concrete: A field trial on concrete slabs. Cement Concrete Res. 2006, 36, 457-468. [CrossRef] open in new tab
  29. Gallaway, B.M. A Manual on the Use of Lightweight Aggregate in Flexible Pavement Systems Expand; Shale Clay Slate Institute: Washington, DC, USA, 1969. open in new tab
  30. Arulrajah, A.; Disfani, M.; Horpibulsuk, S. Sustainable Usage of Construction and Demolition Materials in Roads and Footpaths. Sustain. Issues Civ. Eng. 2017. [CrossRef] open in new tab
  31. Airey, G.D.; Collo, A.C.; Thom, N.H.; Zoorob, S.E.; Shiratori, A. Laboratory evaluation of secondary aggregates in bituminous mixtures. J. Assoc. Asphalt Paving Technol. 2004, 73, 731-769.
  32. Limbachiya, M.C. Bulk engineering and durability properties of washed glass sand concrete. Constr. Build. Mater. 2008, 23, 1078-1083. [CrossRef] open in new tab
  33. Segui, P.; Dore, G.; Bilodeau, J.-P.; Morasse, S. Innovative materials for road insulation in cold climates: Foam glass aggregate. In Proceedings of the 2016 Conference and Exhibition of the Transportation Association of Canada-Efficient Transportation-Managing the Demand, Toronto, ON, Canada, 22-28 September 2016. open in new tab
  34. Omidimoaf, E.; Rajabi, A.M.; Abdelgader, H.S.; Kurpińska, M.; Wilde, K. Effect of coarse grain aggregate on strength parameters of two-stage concrete. Mater. Bud. 2019, 3, 1-3. [CrossRef] open in new tab
  35. Mariak, A.; Kurpińska, M.; Wilde, K. Maturity curve for estimating the in-place strength of high performance concrete. MATEC Web Conf. 2019, 262, 06007. [CrossRef] open in new tab
  36. Mariak, A.; Kurpińska, M. The effect of macro polymer fibres length and content on the fibre reinforced concrete. MATEC Web Conf. 2018, 219, 03004. [CrossRef] open in new tab
  37. Kurpińska, M.; Małasiewicz, A. Der Betonschutz vor der Wirkung der Aggressiven Umgebung;
  38. Tagungsbericht//Ibausil, 15. Internationale Baustofftagung; Bauhaus-Universität Weimar/F.A. Finger-Institut für Baustoffkunde: Weimar, Germany, 2003.
  39. Kurpińska, M. Properties of concrete impregnated using epoxy composition. Roads Bridges 2011, 10, 59-80. open in new tab
  40. Al-Sibahy, A.; Edwards, R. Mechanical and thermal properties of novel lightweight concrete mixtures containing recycled glass and metakaolin. Constr. Build. Mater. 2012, 31, 157-167. [CrossRef] open in new tab
  41. Grzyl, B.; Apollo, M.; Miszewska-Urbańska, E.; Kristowski, A. The criteria for evaluation and selection the best tender applied by the authorities in Poland and selected EU countries. MATEC Web Conf. 2018, 219, 04006. [CrossRef] open in new tab
  42. Grzyl, B.; Miszewska-Urbańska, E.; Apollo, M. The life cycle cost of a building from the point of view of environmental criteria of selecting the most beneficial offer in the area of competitive tendering. Web Conf. 2017, 17, 00028. [CrossRef] open in new tab
  43. Frydenlund, T.E.; Aaboe, R. Granulated Expanded Glass Aggregate-A new vision in road construction. In Proceedings of the XXII PIARC World Road Congress, Durban, South Africa, 19-25 October 2003. open in new tab
  44. Kurpińska, M.; Ferenc, T. Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. ITM Web Conf. 2017, 15, 6005. [CrossRef] open in new tab
  45. Pszczoła, M.; Judycki, J.; Ryś, D. Evaluation of pavement temperatures in Poland during winter conditions. Transp. Res. Procedia 2016, 14, 738-747. [CrossRef] open in new tab
  46. GDDKiA. Catalogue of Typical Flexible and Rigid Road Pavement Structures, Order No. 31 of the General Director for National Roads and Motorways of 16.06.2014; Generalna Dyrekcja Drog Krajowych i Autostrad: Warszawa, Poland, 2014.
  47. GDDKiA. Catalogue of Typical Flexible and Rigid Road Pavement Structures, Order No. 30 of the General Director for National Roads and Motorways of 16.06.2014; Generalna Dyrekcja Drog Krajowych i Autostrad: Warszawa, Poland, 2014.
  48. Cheng, A.; Hsu, H.-M.; Chao, S.-J.; Lin, K.-L. Experimental Study on Properties of Pervious Concrete Made with Recycled Aggregate. Int. J. Pavement Res. Technol. 2011, 4, 104-110.
  49. Judycki, J.; Jaskuła, P.; Pszczoła, M.; Ryś, D.; Jaczewski, M.; Alenowicz, J.; Dołżycki, B.; Stienss, M. Analyses and Designing of Flexible and Semi-Rigid Road Pavement Structures; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 2014. open in new tab
  50. Judycki, J.; Jaskuła, P.; Pszczoła, M.; Ryś, D.; Jaczewski, M.; Alenowicz, J.; Stienss, M. New Polish Catalogue of Typical Flexible and Semi-Rigid Pavements. MATEC Web Conf. 2017, 122, 4002. [CrossRef] open in new tab
  51. Kristowski, A.; Grzyl, B.; Kurpińska, M.; Pszczoła, M. The rigid and flexible road pavements in terms of life cycle costs. In Proceedings of the Creative Construction Conference, Ljubljana, Slovenia, 30 June-3 July 2018. [CrossRef] open in new tab
  52. Grzyl, B.; Siemaszko, A. The Life Cycle Assessment and Life Cycle Cost in public works contracts. Web Conf. 2018, 44, 00047. [CrossRef] open in new tab
  53. Grzyl, B.; Kristowski, A.; Jamroz, K.; Gobis, A. Methods of estimating the cost of traffic safety equipment's life cycle. MATEC Web Conf. 2017, 122, 02003. [CrossRef] open in new tab
  54. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 156 times

Recommended for you

Meta Tags