The development of an indirect ELISA for the detection of goose parvovirus antibodies using specific VP3 subunits as the coating antigen - Publication - Bridge of Knowledge

Search

The development of an indirect ELISA for the detection of goose parvovirus antibodies using specific VP3 subunits as the coating antigen

Abstract

In Poland, the leader in goose production in Europe, goose parovirus infection, or Derzsy’s disease (DD), must be reported to the veterinary administration due to the serious economic and epizootic threat to waterfowl production. Prophylactic treatment for DD includes attenuated live or inactivated vaccines. Moreover, the control of DD includes the monitoring of maternal derived antibody (MDA) levels in the offspring and antibody titers in the parent flock after vaccination. The aim of this study was to develop an ELISA for the detection of goose parvovirus (GPV) antibodies. Two recombinant protein fragments derived from VP3 (viral protein 3) GPV, namely VP3ep6 and VP3ep4–6 with a mass of 20.9 and 32.3 kDa, respectively, were produced using an Escherichia coli expression system. These proteins were purified by one-step nickel-affinity chromatography, which yielded protein preparations with a purity above 95%. These recombinant proteins were useful in the detection of serum anti-GPV antibodies, and this was confirmed by Western blotting. However, recombinant VP3ep4–6 protein showed a greater ability to correctly identify sera from infected geese. In the next stage of the project, a pool of 166 goose sera samples, previously examined by a virus neutralization test (VN), was tested. For further studies, one recombinant protein (VP3ep4–6) was selected for optimization of the test conditions. After optimization, the newly developed ELISA was compared to other serological tests, and demonstrated high sensitivity and specificity. In conclusion, the VP3ep4–6 ELISA method described here can be used for the detection of antibodies to GPV in serum.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
BMC Veterinary Research no. 15, pages 1 - 8,
ISSN: 1746-6148
Language:
English
Publication year:
2019
Bibliographic description:
Tarasiuk K., Holec-Gąsior L., Ferra B., Rapak A.: The development of an indirect ELISA for the detection of goose parvovirus antibodies using specific VP3 subunits as the coating antigen// BMC Veterinary Research. -Vol. 15, iss. 1 (2019), s.1-8
DOI:
Digital Object Identifier (open in new tab) 10.1186/s12917-019-2027-1
Bibliography: test
  1. Derzsy D. A viral disease of goslings I epidemiological, clinical, pathological and aetiological studies. Acta Vet Acad Sci Hung. 1967;17(4):443-8.
  2. Gough RE. Application of the agar gel precipitation and virus neutralization test to the serological study of goose parvovirus. Avian Pathology. 1984;13: 501-9. open in new tab
  3. Gough RE. Goose parvovirus (Derzsy's disease). In: Pearson JE, Reed WM, editors. Isolation and identification of avian pathogens, Swayne DE, Glisson JR, Jackwood MW, American Association of Avian Path. USA: University of Pennsylvania; 1998.
  4. Fang DY. Recommendation of gosling plague. Chin J Vet Med. 1962;8:19-20. open in new tab
  5. Holmes JP, Jones JR, Gough RE, Welchman Dde B, Wessels ME, Jones EL. Goose parvovirus in England and Wales. Vet Rec. 2004;155(4):127-8.
  6. Jansson DS, Feinstein R, Kardi V, Mató T, Palya V. Epidemiologic investigation of an outbreak of goose parvovirus infection in Sweden. Avian Dis. 2007;51:609-13. open in new tab
  7. Kozdruń W, Mato T, Palya V, Samorek-Salamonowicz E, Król K, Wozniakowski G. Analiza filogenetyczna szczepów wirusa choroby Derzsy'ego izolowanych o gęsi w Polsce. Medycyna Wet. 2008;64(8):1051-4. open in new tab
  8. Tatár-Kis T, Mató T, Markos B, Palya V. Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathology. 2004;33:438-44. open in new tab
  9. Takehara K, Nishio T, Hayashi Y, Kanda J, Sasaki M, Abe N, Hiraizumi M, Saito S, Yamada T, Haritani M. An outbreak of goose parvovirus infection in Japan. J Vet Med Sci. 1995;4:777-9. open in new tab
  10. Chang PC, Shien JH, Wang MS, Shieh HK. Phylogenetic analysis of parvoviruses isolated in Taiwan from ducks and geese. Avian Pathol. 2000; 29:45-9. open in new tab
  11. Tarasiuk K. Choroba Derzsy'ego zagrożeniem w produkcji drobiu wodnego. Życie Wet. 2015;90(7):440-3.
  12. Chu CY, Pan MJ, Cheng JT. Genetic variation of the nucleocapsid genes of waterfowl parvovirus. J Vet Med Sci. 2001;63:1165-70. open in new tab
  13. Brown KE, Green SW, Young NS. Goose parvovirus -an autonomus member of the Dependovirus genus. Virology. 1995;210:283-91. open in new tab
  14. Zádori Z, Erdei J, Nagy J, Kisary J. Characteristics of the genome of goose parvovirus. Avian Pathology. 1994;23:359-64. open in new tab
  15. Zádori Z, Stefancsik R, Rauch T, Kisary J. Analysis of complete nucleotide sequences of goose and Muscovy duck parvoviruses indicates common ancestral origin with adeno associated virus 2. Virology. 1995;212:562-73. open in new tab
  16. Tsai HJ, Tseng CH, Chang PC, Mei K, Wang SC. Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives. Avian Dis. 2004;48(3):512-21. open in new tab
  17. Ju H, Wei N, Wang Q, Wang C, Jing Z, Guo L, Liu D, Gao M, Ma B, Wang J. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose. Biochem Biophys Res Commun. 2011;409(1):131-6. open in new tab
  18. Palya VJ. Parvovirus infections of waterfowl. In: Swayne DE, Glissen JR, Mcdougald LR, Nolan LK, Suarez DL, Nair VL, editors. Diseases of Poultry. 13th ed. Ames, Iowa: Wiley-Blackwell; 2013. p. 444-54. open in new tab
  19. Kisary J, Derzsy D. Viral disease of goslings IV. Characterization of the causal agent in tissue culture system. Acta Vet Acad Sci Hung. 1974;24:287-92. open in new tab
  20. Kisary J. Indirect immunofluorescence as a diagnostic tool for parvovirus infection of chicken. Avian Pathology. 1985;14:269-70. open in new tab
  21. Takehara K, Nakata T, Takizawa K, Limn CK, Mutoh K, Nakamura M. Expression of goose parvovirus VP1 capsid protein by a baculovirus expression system and establishment of fluorescent antibody test to diagnose goose parvovirus infection. Arch Virol. 1999;144:1639-45. open in new tab
  22. Wang CY, Shieh HK, Shien JH, Ko CY, Chang PC. Expression of capsid proteins and non-structural proteins of waterfowl parvoviruses in Escherichia coli and their use in serological assays. Avian Pathol. 2005;34(5):376-82. open in new tab
  23. Kardi V, Szegletes E. Use of ELISA procedures for the detection of Derzsy's disease virus of geese and of antibodies produced against it. Avian Pathology. 1996;25:25-34. open in new tab
  24. Shang XZ, Zhang YW, Wang ZP, Ju HY, Ma B, Wang JW. Establishment of an indirect ELISA for detection of antibodies against NS2 protein of Gosling plague. Chin J Prev Vet Med. 2010;32:595-8.
  25. Wang Q, Ju H, Li Y, Jing Z, Guo L, Zhao Y, Ma B, Gao M, Zhang W, Wang J. Development and evaluation of a competitive ELISA using a monoclonal antibody for antibody detection after goose parvovirus virus-like particles (VLPs) and vaccine immunization in goose sera. J Virol Methods. 2010;209:69-7. open in new tab
  26. Zhang Y, Li Y, Liu M, Zhang D, Guo D, Liu CH, Zhi H, Wang X, Li G, Li N, Liu S, Xiang W, Tong G. Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies. J Virol Methods. 2010;163:405-9. open in new tab
  27. Le Gall-Reculé G, Jestin V, Chagnaut T, Blanchard P, Jestin A. Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by recombinant protein. J Gen Virol. 1996;77:2159-63. open in new tab
  28. Hanley JA, McNeil BJ. The meaning and use of the area under receiving operating characteristic (ROC) curve. Radiology. 1982;43:29-36. open in new tab
  29. Yu TF, Ma B, Gao MC, Wang JW. Localization of linear B-cell epitopes on goose parvovirus structural protein. Vet Immunol Immunopathol. 2012;145: 522-6. open in new tab
  30. Wang J, Cong Y, Yin R, Feng A, Yang S, Xia X, Xiao Y, Wang W, Liu X, Hu S, Ding Ch YS, Wang CH, Ding Z. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of goose parvovirus as a bivalent vaccine in goslings. Virus Res. 2016;203:77-83. open in new tab
  31. Harańczyk G, Stepień M. Ilustrowana sztuka podejmowania decyzji, Matematyka Społeczeństwo Nauczanie. 2008;41:12-15.
  32. Reed LJ, Muench H. A simple method for estimating fifty percent endpoints. Am J Hyg. 1938;27:493-7. open in new tab
  33. Holec-Gasior L, Kur J. Toxoplasma gondii: recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay. Exp Parasitol. 2010;124(3):272-8. open in new tab
  34. Jarosz Nowak J. Modele oceny stopnia zgody pomiędzy dwoma ekspertami z wykorzystaniem współczynników kappa. Matematyka Stosowana. 2007;8: 126-54.
  35. Publisher's Note open in new tab
  36. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. open in new tab
Verified by:
Gdańsk University of Technology

seen 158 times

Recommended for you

Meta Tags