The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures - Publication - Bridge of Knowledge

Search

The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures

Abstract

Background: Intertrochanteric fractures may occur in a bone with a wide medullary canal that may lead to significant mobility of a intramedullary nail, contrary to an extramedullary device. This study evaluates the Dynamic Hip Screw and the gamma nail in AO 31.A2.1 fractures in these circumstances. Methods: Synthetic femora with canals drilled to 18 mm were used. Five fixation types were examined: a 2 - hole and a 4 – hole Dynamic Hip Screw with a 2 - hole plate, a standard gamma nail with dynamic and static distal locking and a long gamma nail. The specimens were tested with cyclic axial loading, from 500 N increasing of 50 N increments in each cycle. Force at failure, overall stiffness, stiffness at the fracture site, location and mode of failure were recorded. Findings: The short gamma nails dislocated into varus under preload because the nail migrated laterally. The Dynamic Hip Screw was initially stable, but some specimens rotated around the lag screw. The gamma nail was rotationally stable. Both implants failed through femur fracture. The long gamma nailed failed by screw cut – out at forces lower than the ultimate force of the short gamma nail. Interpretation: This study shows that the gamma nail is unstable in a large medullary canal but offers better rotational stability of the proximal fragment. A modification of the nail design or the operative technique may be considered.

Citations

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 2 2

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CLINICAL BIOMECHANICS no. 71, pages 201 - 207,
ISSN: 0268-0033
Language:
English
Publication year:
2019
Bibliographic description:
Ceynowa M., Żerdzicki K., Kłosowski P., Pankowski R., Mazurek T.: The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures// CLINICAL BIOMECHANICS -Vol. 71, (2019), s.201-207
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.clinbiomech.2019.11.006
Bibliography: test
  1. Aminian, A., Gao, F., Fedoriw, W.W., Zhang, L.Q., Kalainov, D.M., Merk, B.R., 2007. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J. Orthop. Trauma 21, 544-548. https://doi.org/10.1097/BOT. 0b013e31814b822e. open in new tab
  2. Barton, T.M., Gleeson, R., Topliss, C., Greenwood, R., Harries, W.J., Chesser, T.J.S., 2010. A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J. Bone Joint Surg. Am. 92, 792-798. https://doi.org/10.2106/JBJS.I.00508. open in new tab
  3. Basso, T., Klaksvik, J., Syversen, U., Foss, O.A., 2012. Biomechanical femoral neck frac- ture experiments -a narrative review. Injury 43, 1633-1639. https://doi.org/10. 1016/j.injury.2012.03.032. open in new tab
  4. Basso, T., Klaksvik, J., Syversen, U., Foss, O. a, 2014. A biomechanical comparison of composite femurs and cadaver femurs used in experiments on operated hip fractures. J. Biomech. 47, 3898-3902. https://doi.org/10.1016/j.jbiomech.2014.10.025. open in new tab
  5. Baumgaertner, M.R., Curtin, S.L., Lindskog, D.M., Keggi, J.M., 1995. The value of the tip- apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. JBJS 77. open in new tab
  6. Bhandari, M., Schemitsch, E., Jönsson, A., Zlowodzki, M., Haidukewych, G.J., 2009. Gamma nails revisited: gamma nails versus compression hip screws in the manage- ment of intertrochanteric fractures of the hip: a meta-analysis. J. Orthop. Trauma 23, 460-464. https://doi.org/10.1097/BOT.0b013e318162f67f. open in new tab
  7. Bojan, A.J., Beimel, C., Speitling, A., Taglang, G., Ekholm, C., Jönsson, A., 2010. 3066 consecutive gamma nails. 12 years experience at a single centre. BMC Musculoskelet. Disord. 11. https://doi.org/10.1186/1471-2474-11-133. open in new tab
  8. Ceynowa, M., Rocławski, M., Pankowski, R., Mazurek, T., 2019. The position and mor- phometry of the fovea capitis femoris in computed tomography of the hip. Surg. Radiol. Anat. 41, 101-107. https://doi.org/10.1007/s00276-018-2097-y. open in new tab
  9. Haynes, R.C., Pöll, R.G., Miles, A.W., Weston, R.B., 1997. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dy- namic hip screw. Injury 28, 337-341. https://doi.org/10.1016/S0020-1383(97) 00035-1. open in new tab
  10. Kaiser, W., Burmester, J., Hausmann, H., Guliemos, V., Haetzel, M., Merker, H., 1997. Vergleichende Stabilitätsprüfungen von DHS-und g -Nagel-Osteosynthesen bei in- stabilen pertrochantären Femurosteotomien. Langenbecks Arch. Chir. 382, 100-106. open in new tab
  11. Kim, W.Y., Han, C.H., Park, J.I., Kim, J.Y., 2001. Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int. Orthop. 25, 360-362. https://doi.org/10.1007/s002640100287. open in new tab
  12. Kokoroghiannis, C., Aktselis, I., Deligeorgis, A., Fragkomichalos, E., Papadimas, D., Pappadas, I., 2012. Evolving concepts of stability and intramedullary fixation of in- tertrochanteric fractures -a review. Injury 43, 686-693. https://doi.org/10.1016/j. injury.2011.05.031. open in new tab
  13. Kukla, C., Pichl, W., Prokesch, R., Jacyniak, W., Heinze, G., Gatterer, R., Heinz, T., 2001. Femoral neck fracture after removal of the standard gamma interlocking nail: a ca- daveric study to determine factors influencing the biomechanical properties of the proximal femur. J. Biomech. 34, 1519-1526. https://doi.org/10.1016/S0021- 9290(01)00157-9. open in new tab
  14. Kuzyk, P.R.T., Zdero, R., Shah, S., Olsen, M., Waddell, J.P., Schemitsch, E.H., 2012. Femoral head lag screw position for cephalomedullary nails: a biomechanical ana- lysis. J. Orthop. Trauma 26. open in new tab
  15. Kwak, D.K., Kim, W.H., Lee, S.J., Rhyu, S.H., Jang, C.Y., Yoo, J.H., 2018. Biomechanical comparison of three different intramedullary nails for fixation of unstable basi- cervical intertrochanteric fractures of the proximal femur: experimental studies. Biomed. Res. Int. 2018. https://doi.org/10.1155/2018/7618079. open in new tab
  16. Lenich, A., Bachmeier, S., Prantl, L., Nerlich, M., Hammer, J., Mayr, E., Al-Munajjed, A.A., Füchtmeier, B., 2011. Is the rotation of the femural head a potential initiation for cutting out? A theoretical and experimental approach. BMC Musculoskelet. Disord. 12. https://doi.org/10.1186/1471-2474-12-79. open in new tab
  17. Liu, M., Yang, Z., Pei, F., Huang, F., Chen, S., Xiang, Z., 2010. A meta-analysis of the Gamma nail and dynamic hip screw in treating peritrochanteric fractures. Int. Orthop. 34, 323-328. https://doi.org/10.1007/s00264-009-0783-4. open in new tab
  18. Marmor, M., Elliott, I.S., Marshall, S.T., Yacoubian, Shahan V., Yacoubian, Stephan V., Herfat, S.T., 2015. Biomechanical comparison of long, short, and extended-short nail construct for femoral intertrochanteric fractures. Injury 46, 963-969. https://doi. org/10.1016/j.injury.2015.03.005. open in new tab
  19. Ozkan, K., Turkmen, I., Sahin, A., Yildiz, Y., Erturk, S., Soylemez, S., 2015. A bio- mechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation. A study on synthetic bones. Indian J. Orthop. 39, 347-351. https://doi.org/10.4103/0019-5413.156220. open in new tab
  20. Palm, H., Jacobsen, S., Sonne-Holm, S., Gebuhr, P., 2016. Integrity of the lateral femoral wall in intertrochanteric hip fractures. J. Bone Joint Surg. Am. 89, 470-475. https:// doi.org/10.2106/00004623-200703000-00002. open in new tab
  21. Parker, M.J., Handoll, H.H.G., 2008. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. open in new tab
  22. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000093.pub4. open in new tab
  23. Queally, J.M., Harris, E., Handoll, H.H., Parker, M.J., 2014. Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst. Rev. 9, Cd004961. https://doi.org/10.1002/14651858.CD004961.pub4. open in new tab
  24. Rog, D., Grigsby, P., Hill, Z., Pinette, W., Inceoglu, S., Zuckerman, L., 2017. A bio- mechanical comparison of the two-and four-hole side-plate dynamic hip screw in an osteoporotic composite femur model. J. Orthop. Surg. 25. https://doi.org/10.1177/ 2309499017717199. open in new tab
  25. Rosenblum, S.F., Zuckerman, J.D., Kummer, F.J., Tam, B.S., 1992. A biomechanical evaluation of the gamma nail. J. Bone Joint Surg. (Br.) 74-B, 352-357. open in new tab
  26. Saarenpää, I., Heikkinen, T., Ristiniemi, J., Hyvönen, P., Leppilahti, J., Jalovaara, P., 2009. Functional comparison of the dynamic hip screw and the Gamma locking nail in trochanteric hip fractures: a matched-pair study of 268 patients. Int. Orthop. 33, 255-260. https://doi.org/10.1007/s00264-007-0458-y. open in new tab
  27. Schipper, I.B., Marti, R.K., Van Der Werken, C., 2004. Unstable trochanteric femoral fractures: Extramedullary or intramedullary fixation: review of literature. Injury 35, 142-151. https://doi.org/10.1016/S0020-1383(03)00287-0. open in new tab
  28. Schneider, E., Michel, M.C., Genge, M., Zuber, K., Ganz, R., Perren, S.M., 2001. Loads acting in an intramedullary nail during fracture healing in the human femur. J. Biomech. 34, 849-857. https://doi.org/10.1016/S0021-9290(01)00037-9. open in new tab
  29. Selvan, V.T., Oakley, M.J., Rangan, A., Al-Lami, M.K., 2004. Optimum configuration of cannulated hip screws for the fixation of intracapsular hip fractures: a biomechanical study. Injury 35, 136-141. https://doi.org/10.1016/S0020-1383(03)00059-7. open in new tab
  30. Sommers, M.B., Fitzpatrick, D.C., Madey, S.M., Vande Zanderschulp, C., Bottlang, M., 2007. A surrogate long-bone model with osteoporotic material properties for bio- mechanical testing of fracture implants. J. Biomech. 40, 3297-3304. https://doi.org/ 10.1016/j.jbiomech.2007.04.024. open in new tab
  31. Weiser, L., Ruppel, A.A., Nüchtern, J.V., Sellenschloh, K., Zeichen, J., Püschel, K., Morlock, M.M., Lehmann, W., 2015. Extra-vs. intramedullary treatment of per- trochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch. Orthop. Trauma Surg. 135, 1101-1106. https://doi. org/10.1007/s00402-015-2252-4. open in new tab
Verified by:
Gdańsk University of Technology

seen 152 times

Recommended for you

Meta Tags