The hydration properties of protein stabilizer, trimethylamine-N-oxide in aqueous solutions of N-methylacetamide – The volumetric and compressibility studies between 288.15 and 308.15 K - Publication - Bridge of Knowledge

Search

The hydration properties of protein stabilizer, trimethylamine-N-oxide in aqueous solutions of N-methylacetamide – The volumetric and compressibility studies between 288.15 and 308.15 K

Abstract

Apparent molar volumes and apparent molar isentropic compressions of the protein stabilizer, trimethylamine-N-oxide (TMAO) were determined from the densities and speed of sound measured at T = (288.15, 298.15 and 308.15) K in aqueous solutions of N-methylacetamide (NMA) at four different concentrations (2, 4, 6 and 8 mol/kg). The concentration dependencies of the calculated quantities extrapolated to the infinite dilution lead to the standard partial molar properties. The latter values were combined with the previously published data for TMAO in pure water, to obtain the partial molar properties of transfer from water to aqueous NMA solutions. From the transfer data the interaction parameters were determined according to the McMillan-Mayer theory formalism. The calculated parameters and their temperature characteristics are discussed in terms of solute-solvent, solute-solute and solute-cosolute interactions and compared with analogous data for protein denaturant, n-butylurea.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
THERMOCHIMICA ACTA no. 685, pages 1 - 6,
ISSN: 0040-6031
Language:
English
Publication year:
2020
Bibliographic description:
Kaczkowska E., Wawer J., Tyczyńska M., Jóźwiak M., Boruń A., Krakowiak J.: The hydration properties of protein stabilizer, trimethylamine-N-oxide in aqueous solutions of N-methylacetamide – The volumetric and compressibility studies between 288.15 and 308.15 K// THERMOCHIMICA ACTA -Vol. 685, (2020), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.tca.2020.178535
Bibliography: test
  1. doi:10.1016/J.MOLLIQ.2019.01.086. open in new tab
  2. M.M.H. Bhuiyan, A.W. Hakin, J.L. Liu, Densities, specific heat capacities, apparent and partial molar volumes and heat capacities of glycine in aqueous solutions of formamide, acetamide, and N,N-Dimethylacetamide at T = 298.15 K and ambient pressure, J. Solution Chem. 39 (2010) 877-896. doi:10.1007/s10953-010-9540-y. open in new tab
  3. E. Kaczkowska, J. Wawer, M. Tyczyńska, M. Jóźwiak, J. Krakowiak, The interaction parameters for solutions of n-butylurea in aqueous solutions of NMA -the volumetric and compressibility studies between 288.15 K and 308.15 K., J. Mol. Liq. submitted (2019). open in new tab
  4. C. Liu, L. Zhou, R. Lin, Interactions of some amino acids with aqueous N,N- dimethylacetamide solutions at 298.15 and 308.15 K: A volumetric approach, J. Solution Chem. 36 (2007) 923-937. doi:10.1007/s10953-007-9158-x. open in new tab
  5. J. Krakowiak, M. Krajewska, J. Wawer, Monitoring of lysozyme thermal denaturation by volumetric measurements and nanoDSF technique in the presence of N-butylurea, J. Biol. Phys. (2019). doi:10.1007/s10867-019-09521-9. open in new tab
  6. A. Panuszko, P. Bruździak, J. Zielkiewicz, D. Wyrzykowski, J. Stangret, Effects of Urea and Trimethylamine-N -oxide on the Properties of Water and the Secondary Structure of Hen Egg White Lysozyme, J. Phys. Chem. B. 113 (2009) 14797-14809. doi:10.1021/jp904001m. open in new tab
  7. P. Bruździak, A. Panuszko, M. Jourdan, J. Stangret, Protein thermal stabilization in aqueous solutions of osmolytes, Acta Biochim. Pol. 63 (2016) 65-70. doi:10.18388/abp.2014_950. open in new tab
  8. B.J. Bennion, V. Daggett, Counteraction of urea-induced protein denaturation by 11 open in new tab
  9. trimethylamine N-oxide: A chemical chaperone at atomic resolution, Proc. Natl. Acad. open in new tab
  10. Sci. 101 (2004) 6433-6438. doi:10.1073/pnas.0308633101. open in new tab
  11. G. Stirnemann, E. Duboué-Dijon, D. Laage, Ab Initio Simulations of Water Dynamics in Aqueous TMAO Solutions: Temperature and Concentration Effects, J. Phys. Chem. open in new tab
  12. B. 121 (2017) 11189-11197. doi:10.1021/acs.jpcb.7b09989. open in new tab
  13. D. Markthaler, J. Zeman, J. Baz, J. Smiatek, N. Hansen, Validation of Trimethylamine- N -oxide (TMAO) Force Fields Based on Thermophysical Properties of Aqueous TMAO Solutions, J. Phys. Chem. B. 121 (2017) 10674-10688. doi:10.1021/acs.jpcb.7b07774. open in new tab
  14. J. Hunger, K.-J. Tielrooij, R. Buchner, M. Bonn, H.J. Bakker, Complex Formation in Aqueous Trimethylamine-N -oxide (TMAO) Solutions, J. Phys. Chem. B. 116 (2012) 4783-4795. doi:10.1021/jp212542q. open in new tab
  15. C.J. Sahle, M.A. Schroer, I. Juurinen, J. Niskanen, Influence of TMAO and urea on the structure of water studied by inelastic X-ray scattering, Phys. Chem. Chem. Phys. 18 (2016) 16518-16526. doi:10.1039/C6CP01922F. open in new tab
  16. E. Kaczkowska, J. Wawer, M. Tyczyńska, M. Jóźwiak, J. Krakowiak, The hydration of selected biologically relevant molecules -the temperature effect on apparent molar volume and compression, J. Mol. Liq. 274 (2019) 345-352. doi:10.1016/j.molliq.2018.10.155. open in new tab
  17. A. Panuszko, M. Wojciechowski, P. Bruździak, P.W. Rakowska, J. Stangret, Characteristics of hydration water around hen egg lysozyme as the protein model in aqueous solution. FTIR spectroscopy and molecular dynamics simulation, Phys. Chem. Chem. Phys. 14 (2012) 15765-15773. doi:10.1039/c2cp42229h. open in new tab
  18. J. Krakowiak, J. Wawer, A. Panuszko, The hydration of the protein stabilizing agents: Trimethylamine-N-oxide, glycine and its N-methylderivatives -The volumetric and compressibility studies, J. Chem. Thermodyn. 60 (2013) 179-190. doi:10.1016/J.JCT.2013.01.023. open in new tab
  19. W.G. McMillan, J.E. Mayer, The statistical thermodynamics of multicomponent systems, J. Chem. Phys. 13 (1945) 276-305. doi:10.1063/1.1724036. open in new tab
  20. M. National, Printed in Great Britain Pergamon Journals Ltd . The sponge Smenospongia, (1987) 5815-5818.
  21. H. Bettin, F. Spieweck, Die Dichte des Wassers als Funktion der Temperatur nach Einführung der Internationalen Temperaturskala von 1990, PTB-Mitteilungen. 100 (1990) 195-196.
  22. Landolt-Bornstein, Neu Serie, Band 5, Molecularakustik Temperaturskala von 1990, PTB-Mitteilungen. 100 (1990) 195-196.
  23. X. Wang, Y. Tian, Y. Lu, Calorimetric and volumetric studies of the interactions of propionamide in aqueous alkan-1-ol solutions at 298.15 K, J. Solution Chem. 37 (2008) 35-44. doi:10.1007/s10953-007-9221-7. open in new tab
  24. T.S. Banipal, G. Singh, B.S. Lark, Partial Molar Volumes of Transfer of Some Amino Acids from Water to Aqueous GlycerolSolutions at 25± C, J. Solution Chem. 30 (2001) 657-670. open in new tab
Verified by:
Gdańsk University of Technology

seen 93 times

Recommended for you

Meta Tags