The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit - Publication - Bridge of Knowledge

Search

The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit

Abstract

To achieve optimal performance of a fuel cell, a reliable monitoring and diagnostic method is required. The currently utilized methods give limited information or they are impossible to use under dynamic working conditions. To obtain comprehensive information about the fuel cell operation we utilized novel dynamic electrochemical impedance spectroscopy. Impedance measurements in dynamic mode were performed on a hydrogen fuel cell, working under various conditions. By utilizing this new methodology, optimum parameters for cell operation were determined. An electrical equivalent circuit for cathodic processes was determined. Presence of an interlayer, between the membrane and the catalytic layer, was postulated. The instantaneous impedance spectra were analysed under the function of current load. The complete character of the impedance spectra was revealed, and the electrical equivalent circuit was validated. The presence of the interlayer was established by impedance analysis and by a profile of platinum content changes in the membrane electrode assembly. The proposed investigation methodology provides monitoring and diagnostics of fuel cell components, which gives the possibility of streamlined management of the fuel cell operation.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 46 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
APPLIED ENERGY no. 251,
ISSN: 0306-2619
Language:
English
Publication year:
2019
Bibliographic description:
Darowicki K., Janicka E., Mielniczek M., Zieliński A., Gaweł Ł., Mitzel J., Hunger J.: The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit// APPLIED ENERGY -Vol. 251,iss. 113396 (2019),
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.apenergy.2019.113396
Bibliography: test
  1. Mai T, Cole W, Reimers A. Setting cost targets for zero-emission electricity generation technologies. Applied Energy 2019;250:582-92. doi:10.1016/j.apenergy.2019.05.001. open in new tab
  2. Conte M. ENERGY | Hydrogen Economy. Encyclopedia of Electrochemical Power Sources, Elsevier; 2009, p. 232-54. doi:10.1016/B978-044452745-5.00084-8. open in new tab
  3. Zhang T, Wang P, Chen H, Pei P. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy 2018;223:249-62. doi:10.1016/j.apenergy.2018.04.049. open in new tab
  4. Löbberding L, Madlener R. Techno-economic analysis of micro fuel cell cogeneration and storage in Germany. Applied Energy 2019;235:1603-13. doi:10.1016/j.apenergy.2018.11.023. open in new tab
  5. Sulaiman N, Hannan MA, Mohamed A, Ker PJ, Majlan EH, Wan Daud WR. Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations. Applied Energy 2018;228:2061-79. doi:10.1016/j.apenergy.2018.07.087. open in new tab
  6. Antolini E, Giorgi L, Pozio A, Passalacqua E. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. Journal of Power Sources 1999;77:136-42. doi:10.1016/S0378-7753(98)00186-4. open in new tab
  7. Shi Z, Wang X, Draper O. Effect of Porosity Distribution of Gas Diffusion Layer on Performance of Proton Exchange Membrane Fuel Cells. vol. 11, ECS; 2007, p. 637-46. doi:10.1149/1.2780977. open in new tab
  8. Kumbur EC, Mench MM. FUEL CELLS -PROTON-EXCHANGE MEMBRANE FUEL CELLS | Water Management. Encyclopedia of Electrochemical Power Sources, Elsevier; 2009, p. 828-47. doi:10.1016/B978-044452745-5.00862-5. open in new tab
  9. Niu Z, Bao Z, Wu J, Wang Y, Jiao K. Two-phase flow in the mixed-wettability gas diffusion layer of proton exchange membrane fuel cells. Applied Energy 2018;232:443-50. doi:10.1016/j.apenergy.2018.09.209. open in new tab
  10. Li Y, Yang J, Song J. Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles. Renewable and Sustainable Energy Reviews 2017;67:160-72. doi:10.1016/j.rser.2016.09.030. open in new tab
  11. El-kharouf A, Mason TJ, Brett DJL, Pollet BG. Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. Journal of Power Sources 2012;218:393-404. doi:10.1016/j.jpowsour.2012.06.099. open in new tab
  12. Slepski P, Janicka E, Darowicki K, Pierozynski B. Impedance monitoring of fuel cell stacks. Journal of Solid State Electrochemistry 2015;19:929-33. doi:10.1007/s10008-014-2676-8. open in new tab
  13. Darowicki K, Janicka E, Slepski P. Study of Direct Methanol Fuel Cell Process Dynamics Using Dynamic Electrochemical Impedance Spectroscopy. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE 2012;7:12090-7.
  14. Darowicki K, Gawel L. Impedance Measurement and Selection of Electrochemical Equivalent Circuit of a Working PEM Fuel Cell Cathode. Electrocatalysis 2017;8:235-44. doi:10.1007/s12678-017-0363-0. open in new tab
  15. Slepski P, Darowicki K, Janicka E, Lentka G. A complete impedance analysis of electrochemical cells used as energy sources. Journal of Solid State Electrochemistry 2012;16:3539-49. doi:10.1007/s10008-012-1825-1. open in new tab
  16. Wysocka J, Krakowiak S, Ryl J, Darowicki K. Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy. Journal of Electroanalytical Chemistry 2016;778:126-36. doi:10.1016/j.jelechem.2016.08.028. open in new tab
  17. Darowicki K, Ślepski P, Szociński M. Application of the dynamic EIS to investigation of transport within organic coatings. Progress in Organic Coatings 2005;52:306-10. doi:10.1016/j.porgcoat.2004.06.007. open in new tab
  18. Darowicki K. Theoretical description of the measuring method of instantaneous impedance spectra. Journal of Electroanalytical Chemistry 2000;486:101-5. doi:10.1016/S0022- 0728(00)00110-8. open in new tab
  19. Darowicki K, Orlikowski J, Lentka G. Instantaneous impedance spectra of a non-stationary model electrical system. Journal of Electroanalytical Chemistry 2000;486:106-10. doi:10.1016/S0022-0728(00)00111-X. open in new tab
  20. Cahan BD. AC Impedance Investigations of Proton Conduction in Nafion TM . Journal of The Electrochemical Society 1993;140:L185. doi:10.1149/1.2221160. open in new tab
  21. Wintersgill MC, Fontanella JJ. Complex impedance measurements on Nafion. Electrochimica Acta 1998;43:1533-8. doi:10.1016/S0013-4686(97)10049-4. open in new tab
  22. Makharia R, Mathias MF, Baker DR. Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society 2005;152:A970. doi:10.1149/1.1888367. open in new tab
  23. Reshetenko T, Kulikovsky A. Impedance Spectroscopy Study of the PEM Fuel Cell Cathode with Nonuniform Nafion Loading. Journal of The Electrochemical Society 2017;164:E3016-21. doi:10.1149/2.0041711jes. open in new tab
  24. Song C, Tang Y, Zhang JL, Zhang J, Wang H, Shen J, et al. PEM fuel cell reaction kinetics in the temperature range of 23-120°C. Electrochimica Acta 2007;52:2552-61. doi:10.1016/j.electacta.2006.09.008. open in new tab
  25. Singh RK, Devivaraprasad R, Kar T, Chakraborty A, Neergat M. Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support. Journal of the Electrochemical Society 2015;162:F489-98. doi:10.1149/2.0141506jes. open in new tab
  26. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry 2001;495:134-45. doi:10.1016/S0022-0728(00)00407-1. open in new tab
  27. Wagner N, Friedrich KA. FUEL CELLS -PROTON-EXCHANGE MEMBRANE FUEL CELLS | Dynamic Operational Conditions. Encyclopedia of Electrochemical Power Sources, Elsevier; 2009, p. 912- 30. doi:10.1016/B978-044452745-5.00239-2. open in new tab
  28. Darowicki K, Janicka E, Mielniczek M, Zielinski A, Gawel L, Mitzel J, et al. Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks. Electrochimica Acta 2018. doi:10.1016/j.electacta.2018.09.105. open in new tab
  29. Kulikovsky AA, Eikerling M. Analytical solutions for impedance of the cathode catalyst layer in PEM fuel cell: Layer parameters from impedance spectrum without fitting. Journal of Electroanalytical Chemistry 2013;691:13-7. doi:10.1016/j.jelechem.2012.12.002. open in new tab
  30. Paik CH, Jarvi TD, O'Grady WE. Extent of PEMFC Cathode Surface Oxidation by Oxygen and Water Measured by CV. Electrochemical and Solid-State Letters 2004;7:A82. doi:10.1149/1.1649698. open in new tab
  31. Boukamp B. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 1986;20:31-44. doi:10.1016/0167-2738(86)90031-7. open in new tab
  32. Pearson K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1900;50:157-75. doi:10.1080/14786440009463897. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 146 times

Recommended for you

Meta Tags