The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties - Publication - Bridge of Knowledge

Search

The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties

Abstract

In this work we show the impact of applied potential on network vibrations and photoelectrochemical properties of a composite material containing hydrogenated titania nanotubes and poly (3,4-ethylenedioxythiophene) with iron hexacyanoferrate (H-TiO2/pEDOT:Fehcf) acting as a redox centre. For this purpose, Raman spectroscopy measurements under the working electrode (WE) polarization were carried out, allowing investigation of changes in the structure of the obtained heterojunction. The photoelectrochemical behaviour of the H-TiO2/pEDOT:Fehcf composite was also studied at different potentials of WE. Both, in-situ Raman spectroelectrochemical and transient photocurrent measurements were performed in aqueous 0.1 M K2SO4 electrolyte. The reduction and oxidation of the electrode material enabled control of the organic matrix doping level and in consequence processes occurring at the electrode/electrolyte interface. The intensity of bands typical for the organic part of the junction strongly depends on the applied potential: the highest intensity of Raman bands characteristic for the pEDOT chain was observed in the cathodic potential range, whereas under anodic polarization pEDOT signals diminish. On the contrary, the intensity and the positions of anatase active modes remain almost unchanged independently of the applied potential. Furthermore, the effect of various polarization conditions within the anodic and cathodic potential ranges on the photocurrents was also observed. The maximum value of the photocurrent is reached at +0.8 V vs. Ag/AgCl/0.1 M KCl and equals 290 μA/cm2.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

export:

Szkoda, M., Nowaczyk, G., Lisowska-Oleksiak, A., & Siuzdak, K. (2018). The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties. ELECTROCHIMICA ACTA, 279, 34-43. https://doi.org/10.1016/j.electacta.2018.05.068

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHIMICA ACTA no. 279, pages 34 - 43,
ISSN: 0013-4686
Language:
English
Publication year:
2018
Bibliographic description:
Szkoda M., Nowaczyk G., Lisowska-Oleksiak A., Siuzdak K.: The influence of polarization of titania nanotubes modified by a hybrid system made of a conducting polymer PEDOT and Prussian Blue redox network on the Raman spectroscopy response and photoelectrochemical properties// ELECTROCHIMICA ACTA. -Vol. 279, (2018), s.34-43
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2018.05.068
Verified by:
Gdańsk University of Technology

seen 129 times

Recommended for you

Meta Tags