Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes - Publication - Bridge of Knowledge

Search

Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes

Abstract

This review paper focuses on the phenomenon of thermochemical expansion of two specific categories of conducting ceramics: Proton Conducting Ceramics (PCC) and Mixed Ionic-Electronic Conductors (MIEC). The theory of thermal expansion of ceramics is underlined from microscopic to macroscopic points of view while the chemical expansion is explained based on crystallography and defect chemistry. Modelling methods are used to predict the thermochemical expansion of PCCs and MIECs with two examples: hydration of barium zirconate (BaZr1−xYxO3−δ) and oxidation/reduction of La1−xSrxCo0.2Fe0.8O3−δ. While it is unusual for a review paper, we conducted experiments to evaluate the influence of the heating rate in determining expansion coefficients experimentally. This was motivated by the discrepancy of some values in literature. The conclusions are that the heating rate has little to no effect on the obtained values. Models for the expansion coefficients of a composite material are presented and include the effect of porosity. A set of data comprising thermal and chemical expansion coefficients has been gathered from the literature and presented here divided into two groups: protonic electrolytes and mixed ionic-electronic conductors. Finally, the methods of mitigation of the thermal mismatch problem are discussed

Citations

  • 1 0 7

    CrossRef

  • 0

    Web of Science

  • 1 0 8

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 145 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Crystals no. 8, edition 9, pages 1 - 68,
ISSN: 2073-4352
Language:
English
Publication year:
2018
Bibliographic description:
Løken A., Ricote S., Wachowski S.: Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes// Crystals. -Vol. 8, iss. 9 (2018), s.1-68
DOI:
Digital Object Identifier (open in new tab) 10.3390/cryst8090365
Bibliography: test
  1. Desaguliers, J.T. A Course of Experimental Philosophy; open in new tab
  2. W. Innys: London, UK, 1745.
  3. Touloukian, Y.S.; Kirby, R.K.; Taylor, R.E.; Desai, P.D. Thermal Expansion; Springer US: Boston, MA, USA, 1975; ISBN 978-1-4757-1624-5. open in new tab
  4. Marrony, M.; Berger, P.; Mauvy, F.; Grenier, J.C.; Sata, N.; Magrasó, A.; Haugsrud, R.; Slater, P.R.; Taillades, G.; Roziere, J.; et al. Proton-Conducting Ceramics. From Fundamentals to Applied Research;
  5. Marrony, M., Ed.; Pan Stanford Publishing: Singapore, 2016; ISBN 978-981-4613-84-2.
  6. Colomban, P. Proton Conductors: Solids, Membranes and Gels-Materials and Devices; Cambridge University Press: Cambridge, UK, 1992. open in new tab
  7. Iwahara, H.; Yajima, T.; Hibino, T.; Ozaki, K.; Suzuki, H. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ion. 1993, 61, 65-69. [CrossRef] open in new tab
  8. Iwahara, H.; Uchida, H.; Ono, K.; Ogaki, K. Proton Conduction in Sintered Oxides Based on BaCeO 3 . J. Electrochem. Soc. 1988, 135, 529-533. [CrossRef] open in new tab
  9. Duan, C.; Tong, J.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; OHayre, R.; O'Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321-1326. [CrossRef] [PubMed] open in new tab
  10. Morejudo, S.H.; Zanón, R.; Escolástico, S.; Yuste-Tirados, I.; Malerød-Fjeld, H.; Vestre, P.K.; Coors, W.G.; Martínez, A.; Norby, T.; Serra, J.M.; et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 2016, 353, 563-566. [CrossRef] [PubMed] open in new tab
  11. Coors, W.G. Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 2003, 118, 150-156. [CrossRef] open in new tab
  12. Malerød-Fjeld, H.; Clark, D.; Yuste-Tirados, I.; Zanón, R.; Catalán-Martinez, D.; Beeaff, D.; Morejudo, S.H.; Vestre, P.K.; Norby, T.; Haugsrud, R.; et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2017, 2, 923-931. [CrossRef] open in new tab
  13. Iwahara, H. High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production. Solid State Ion. 1988, 28-30, 573-578. [CrossRef] open in new tab
  14. Molenda, J.; Kupecki, J.; Baron, R.; Blesznowski, M.; Brus, G.; Brylewski, T.; Bucko, M.; Chmielowiec, J.; Cwieka, K.; Gazda, M.; et al. Status report on high temperature fuel cells in Poland-Recent advances and achievements. Int. J. Hydrog. Energy 2017, 42, 4366-4403. [CrossRef] open in new tab
  15. Iwahara, H. Proton conducting ceramics and their applications. Solid State Ion. 1996, 86-88, 9-15. [CrossRef] open in new tab
  16. Norby, T. Solid-state protonic conductors: Principles, properties, progress and prospects. Solid State Ion. 1999, 125, 1-11. [CrossRef] open in new tab
  17. Zagórski, K.; Wachowski, S.; Szymczewska, D.; Mielewczyk-Gryń, A.; Jasiński, P.; Gazda, M. Performance of a single layer fuel cell based on a mixed proton-electron conducting composite. J. Power Sources 2017, 353, 230-236. [CrossRef] open in new tab
  18. Wachowski, S.; Li, Z.; Polfus, J.M.; Norby, T. Performance and stability in H 2 S of SrFe 0.75 Mo 0.25 O 3−δ as electrode in proton ceramic fuel cells. J. Eur. Ceram. Soc. 2018, 38, 163-171. [CrossRef] open in new tab
  19. Sakai, T.; Matsushita, S.; Matsumoto, H.; Okada, S.; Hashimoto, S.; Ishihara, T. Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors. Int. J. Hydrog. Energy 2009, 34, 56-63. [CrossRef] open in new tab
  20. Katahira, K.; Matsumoto, H.; Iwahara, H.; Koide, K.; Iwamoto, T. Solid electrolyte hydrogen sensor with an electrochemically-supplied hydrogen standard. Sens. Actuators B Chem. 2001, 73, 130-134. [CrossRef] open in new tab
  21. Yajima, T.; Koide, K.; Takai, H.; Fukatsu, N.; Iwahara, H. Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries. Solid State Ion. 1995, 79, 333-337. [CrossRef] open in new tab
  22. Serret, P.; Colominas, S.; Reyes, G.; Abellà, J. Characterization of ceramic materials for electrochemical hydrogen sensors. Fusion Eng. Des. 2011, 86, 2446-2449. [CrossRef] open in new tab
  23. Volkov, A.; Gorbova, E.; Vylkov, A.; Medvedev, D.; Demin, A.; Tsiakaras, P. Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sens. Actuators B Chem. 2017, 244, 1004-1015. [CrossRef] open in new tab
  24. Phair, J.W.; Badwal, S.P.S. Review of proton conductors for hydrogen separation. Ionics 2006, 12, 103-115. [CrossRef] open in new tab
  25. Lundin, S.T.B.; Patki, N.S.; Fuerst, T.F.; Ricote, S.; Wolden, C.A.; Way, J.D. Dense Inorganic Membranes for Hydrogen Separation. In Membranes for Gas Separations; World Scientific: Singapore, 2017; pp. 271-363. open in new tab
  26. Tao, Z.; Yan, L.; Qiao, J.; Wang, B.; Zhang, L.; Zhang, J. A review of advanced proton-conducting materials for hydrogen separation. Prog. Mater. Sci. 2015, 74, 1-50. [CrossRef] open in new tab
  27. Fontaine, M.L.; Norby, T.; Larring, Y.; Grande, T.; Bredesen, R. Oxygen and Hydrogen Separation Membranes Based on Dense Ceramic Conductors. Membr. Sci. Technol. 2008, 13, 401-458. [CrossRef] open in new tab
  28. Choi, S.; Kucharczyk, C.J.; Liang, Y.; Zhang, X.; Takeuchi, I.; Ji, H.I.; Haile, S.M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 2018, 3, 202-210. [CrossRef] open in new tab
  29. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981, 3-4, 359-363. [CrossRef] open in new tab
  30. Vasileiou, E.; Kyriakou, V.; Garagounis, I.; Vourros, A.; Stoukides, M. Ammonia synthesis at atmospheric pressure in a BaCe 0.2 Zr 0.7 Y 0.1 O 2.9 solid electrolyte cell. Solid State Ion. 2015, 275, 110-116. [CrossRef] open in new tab
  31. Marnellos, G.; Stoukides, M. Ammonia Synthesis at Atmospheric Pressure. Science 1998, 282, 98-100. [CrossRef] [PubMed] open in new tab
  32. Gocha, A. CeramicTechToday from The American Ceramic Society; The American Ceramic Society: Westerville, OH, USA, 2017.
  33. Dubois, A.; Ricote, S.; Braun, R.J. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. J. Power Sources 2017, 369, 65-77. [CrossRef] open in new tab
  34. Duan, C.; Kee, R.J.; Zhu, H.; Karakaya, C.; Chen, Y.; Ricote, S.; Jarry, A.; Crumlin, E.J.; Hook, D.; Braun, R.; et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217-222. [CrossRef] [PubMed] open in new tab
  35. Nakajo, A.; Stiller, C.; Härkegård, G.; Bolland, O. Modeling of thermal stresses and probability of survival of tubular SOFC. J. Power Sources 2006, 158, 287-294. [CrossRef] open in new tab
  36. Tietz, F. Thermal expansion of SOFC materials. Ionics 1999, 5, 129-139. [CrossRef] open in new tab
  37. Selimovic, A.; Kemm, M.; Torisson, T.; Assadi, M. Steady state and transient thermal stress analysis in planar solid oxide fuel cells. J. Power Sources 2005, 145, 463-469. [CrossRef] open in new tab
  38. Lin, C.K.; Chen, T.T.; Chyou, Y.P.; Chiang, L.K. Thermal stress analysis of a planar SOFC stack. J. Power Sources 2007, 164, 238-251. [CrossRef] open in new tab
  39. Laurencin, J.; Delette, G.; Lefebvre-Joud, F.; Dupeux, M. A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration. J. Eur. Ceram. Soc. 2008, 28, 1857-1869. [CrossRef] open in new tab
  40. Carter, B.; Norton, G. Ceramic Materials; Springer: New York, NY, USA, 2007; ISBN 978-0-387-46270-7.
  41. Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics, 2nd ed.; Wiley: Hoboken, NJ, USA, 1976; ISBN 978-0-471-47860-7.
  42. Kittel, C.; McEuen, P. Introduction to Solid State Physics; Willey: Hoboken, NJ, USA, 1998; Volume 8, ISBN 047141526X.
  43. Levy, R.A. Principles of Solid State Physics; Academic Press: Cambridge, MA, USA, 1968; ISBN 9780124457508. open in new tab
  44. Brown, F.C. The Physics of Solids; open in new tab
  45. W.A. Benjamin: New York, NY, USA, 1967.
  46. Krishnan, R.S.; Srinivasan, R.; Devanarayan, S. Thermal Expansion of Crystals; Pergamon Press: Oxford, UK, 1979; ISBN 0-08-021405-3. open in new tab
  47. Belousov, R.I.; Filatov, S.K. Algorithm for calculating the thermal expansion tensor and constructing the thermal expansion diagram for crystals. Glas. Phys. Chem. 2007, 33, 271-275. [CrossRef] open in new tab
  48. Paufler, P.; Weber, T. On the determination of linear expansion coefficients of triclinic crystals using X-ray diffraction. Eur. J. Mineral. 1999, 11, 721-730. [CrossRef] open in new tab
  49. Branson, D.L. Thermal Expansion Coefficients of Zirconate Ceramics. J. Am. Ceram. Soc. 1965, 48, 441-442. [CrossRef] open in new tab
  50. Adler, S.B. Chemical Expansivity of Electrochemical Ceramics. J. Am. Ceram. Soc. 2004, 84, 2117-2119. [CrossRef] open in new tab
  51. Garai, J. Correlation between thermal expansion and heat capacity. Calphad 2006, 30, 354-356. [CrossRef] open in new tab
  52. Mohazzabi, P.; Behroozi, F. Thermal expansion of solids: A simple classical model. Eur. J. Phys. 1997, 18, 237-240. [CrossRef] open in new tab
  53. Suzuki, I. Thermal expansion of periclase and olivine and their anharmonic properties. In Elastic Properties and Equations of State; American Geophysical Union: Washington, DC, USA, 1988; Volume 23, pp. 361-375, ISBN 0875902405. open in new tab
  54. Samara, G.A.; Morosin, B. Anharmonic Effects in KTaO 3 : Ferroelectric Mode, Thermal Expansion, and Compressibility. Phys. Rev. B 1973, 8, 1256-1264. [CrossRef] open in new tab
  55. Li, C.W.; Tang, X.; Muñoz, J.A.; Keith, J.B.; Tracy, S.J.; Abernathy, D.L.; Fultz, B. Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF 3 . Phys. Rev. Lett. 2011, 107, 195504. [CrossRef] [PubMed] open in new tab
  56. Janio de Castro Lima, J.; Paraguassu, A.B. Linear thermal expansion of granitic rocks: Influence of apparent porosity, grain size and quartz content. Bull. Eng. Geol. Environ. 2004, 63, 215-220. [CrossRef] open in new tab
  57. Parker, F.J.; Rice, R.W. Correlation between Grain Size and Thermal Expansion for Aluminum Titanate Materials. J. Am. Ceram. Soc. 1989, 72, 2364-2366. [CrossRef] open in new tab
  58. Antal, D.; Húlan, T.; Štubňa, I.; Záleská, M.; Trník, A. The influence of texture on elastic and thermophysical properties of kaolin-and illite-based ceramic bodies. Ceram. Int. 2017, 43, 2730-2736. [CrossRef] open in new tab
  59. Paulik, S.W.; Faber, K.T.; Fuller, E.R. Development of Textured Microstructures in Ceramics with Large Thermal Expansion Anisotropy. J. Am. Ceram. Soc. 1994, 77, 454-458. [CrossRef] open in new tab
  60. Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63-94. [CrossRef] open in new tab
  61. Marrocchelli, D.; Perry, N.H.; Bishop, S.R. Understanding chemical expansion in perovskite-structured oxides. Phys. Chem. Chem. Phys. 2015, 17, 10028-10039. [CrossRef] [PubMed] open in new tab
  62. Marrocchelli, D.; Bishop, S.R.; Tuller, H.L.; Yildiz, B. Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies. Adv. Funct. Mater. 2012, 22, 1958-1965. [CrossRef] open in new tab
  63. Marrocchelli, D.; Bishop, S.R.; Tuller, H.L.; Watson, G.W.; Yildiz, B. Charge localization increases chemical expansion in cerium-based oxides. Phys. Chem. Chem. Phys. 2012, 14, 12070-12074. [CrossRef] [PubMed] open in new tab
  64. Haugsrud, R. On the high-temperature oxidation of nickel. Corros. Sci. 2003, 45, 211-235. [CrossRef] open in new tab
  65. Richardson, J.T.; Scates, R.; Twigg, M.V. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl. Catal. A Gen. 2003, 246, 137-150. [CrossRef] open in new tab
  66. Vullum, F.; Nitsche, F.; Selbach, S.M.; Grande, T. Solid solubility and phase transitions in the system LaNb 1−x Ta x O 4 . J. Solid State Chem. 2008, 181, 2580-2585. [CrossRef] open in new tab
  67. Wachowski, S.; Mielewczyk-Gryn, A.; Gazda, M. Effect of isovalent substitution on microstructure and phase transition of LaNb 1−x M x O 4 (M = Sb, V or Ta; x = 0.05-0.3). J. Solid State Chem. 2014, 219, 201-209. [CrossRef] open in new tab
  68. Haugsrud, R.; Norby, T. High-temperature proton conductivity in acceptor-doped LaNbO 4 . Solid State Ion. 2006, 177, 1129-1135. [CrossRef] open in new tab
  69. Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17-26. [CrossRef] open in new tab
  70. Yamazaki, Y.; Yang, C.K.; Haile, S.M. Unraveling the defect chemistry and proton uptake of yttrium-doped barium zirconate. Scr. Mater. 2011, 65, 102-107. [CrossRef] open in new tab
  71. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751-767. [CrossRef] open in new tab
  72. Omata, T.; Noguchi, Y.; Otsuka-Yao-Matsuo, S. Infrared Study of High-Temperature Proton-Conducting Aliovalently Doped SrZrO 3 and BaZrO 3 . J. Electrochem. Soc. 2005, 152, E200-E205. [CrossRef] open in new tab
  73. Imashuku, S.; Uda, T.; Nose, Y.; Awakura, Y. To journal of phase equilibria and diffusion phase relationship of the BaO-ZrO 2 -YO 1.5 system at 1500 and 1600 • C. J. Phase Equilibria Diffus. 2010, 31, 348-356. [CrossRef] open in new tab
  74. Giannici, F.; Shirpour, M.; Longo, A.; Martorana, A.; Merkle, R.; Maier, J. Long-range and short-range structure of proton-conducting Y:BaZrO 3 . Chem. Mater. 2011, 23, 2994-3002. [CrossRef] open in new tab
  75. Shirpour, M.; Rahmati, B.; Sigle, W.; Van Aken, P.A.; Merkle, R.; Maier, J. Dopant segregation and space charge effects in proton-conducting BaZrO 3 perovskites. J. Phys. Chem. C 2012, 116, 2453-2461. [CrossRef] open in new tab
  76. Kreuer, K.D.; Adams, S.; Münch, W.; Fuchs, A.; Klock, U.; Maier, J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ion. 2001, 145, 295-306. [CrossRef] open in new tab
  77. Oikawa, I.; Takamura, H. Correlation among Oxygen Vacancies, Protonic Defects, and the Acceptor Dopant in Sc-Doped BaZrO 3 Studied by 45Sc Nuclear Magnetic Resonance. Chem. Mater. 2015, 27, 6660-6667. [CrossRef] open in new tab
  78. Han, D.; Shinoda, K.; Uda, T. Dopant Site Occupancy and Chemical Expansion in Rare Earth-Doped Barium Zirconate. J. Am. Ceram. Soc. 2014, 97, 643-650. [CrossRef] open in new tab
  79. Hong, S.J.; Virkar, A.V. Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes. J. Am. Ceram. Soc. 1995, 78, 433-439. [CrossRef] open in new tab
  80. Andersson, A.K.E.; Selbach, S.M.; Knee, C.S.; Grande, T. Chemical Expansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics. J. Am. Ceram. Soc. 2014, 97, 2654-2661. [CrossRef] open in new tab
  81. Han, D.; Hatada, N.; Uda, T. Chemical Expansion of Yttrium-Doped Barium Zirconate and Correlation with Proton Concentration and Conductivity. J. Am. Ceram. Soc. 2016, 99, 3745-3753. [CrossRef] open in new tab
  82. Yamaguchi, S.; Yamada, N. Thermal lattice expansion behavior of Yb-doped BaCeO 3 . Solid State Ion. 2003, 162-163, 23-29. [CrossRef] open in new tab
  83. Kreuer, K.D. Proton-conducting oxides. Annu. Rev. Mater. Res. 2003, 33, 333-359. [CrossRef] open in new tab
  84. Kinyanjui, F.G.; Norberg, S.T.; Ahmed, I.; Eriksson, S.G.; Hull, S. In-situ conductivity and hydration studies of proton conductors using neutron powder diffraction. Solid State Ion. 2012, 225, 312-316. [CrossRef] open in new tab
  85. Jedvik, E.; Lindman, A.; Benediktsson, M.Þ.; Wahnström, G. Size and shape of oxygen vacancies and protons in acceptor-doped barium zirconate. Solid State Ion. 2015, 275, 2-8. [CrossRef] open in new tab
  86. Bjørheim, T.S.; Kotomin, E.A.; Maier, J. Hydration entropy of BaZrO 3 from first principles phonon calculations. J. Mater. Chem. A 2015, 3, 7639-7648. [CrossRef] open in new tab
  87. Bjørheim, T.S.; Løken, A.; Haugsrud, R. On the relationship between chemical expansion and hydration thermodynamics of proton conducting perovskites. J. Mater. Chem. A 2016, 4, 5917-5924. [CrossRef] open in new tab
  88. Løken, A.; Saeed, S.W.; Getz, M.N.; Liu, X.; Bjørheim, T.S. Alkali metals as efficient A-site acceptor dopants in proton conducting BaZrO 3 . J. Mater. Chem. A 2016, 4, 9229-9235. [CrossRef] open in new tab
  89. Løken, A.; Haugsrud, R.; Bjørheim, T.S. Unravelling the fundamentals of thermal and chemical expansion of BaCeO 3 from first principles phonon calculations. Phys. Chem. Chem. Phys. 2016, 18, 31296-31303. [CrossRef] [PubMed] open in new tab
  90. Løken, A.; Bjørheim, T.S.; Haugsrud, R. The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe 0.9 X 0.1 O 3−δ (X = Sc, Ga, Y, In, Gd and Er). J. Mater. Chem. A 2015, 3, 23289-23298. [CrossRef] open in new tab
  91. Kim, H.S.; Jang, A.; Choi, S.Y.; Jung, W.; Chung, S.Y. Vacancy-Induced Electronic Structure Variation of Acceptors and Correlation with Proton Conduction in Perovskite Oxides. Angew. Chem. Int. Ed. 2016, 55, 13499-13503. [CrossRef] [PubMed] open in new tab
  92. Løken, A. Hydration Thermodynamics of Oxides. Effects of Defect Associations. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2017.
  93. Bishop, S.R.; Duncan, K.L.; Wachsman, E.D. Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochim. Acta 2009, 54, 1436-1443. [CrossRef] open in new tab
  94. Marrocchelli, D.; Chatzichristodoulou, C.; Bishop, S.R. Defining chemical expansion: The choice of units for the stoichiometric expansion coefficient. Phys. Chem. Chem. Phys. 2014, 16, 9229-9232. [CrossRef] [PubMed] open in new tab
  95. Atkinson, A.; Ramos, T.M.G.M. Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion. 2000, 129, 259-269. [CrossRef] open in new tab
  96. Jiang, S.P. A comparison of O 2 reduction reactions on porous (La,Sr)MnO 3 and (La,Sr)(Co,Fe)O 3 electrodes. Solid State Ion. 2002, 146, 1-22. [CrossRef] open in new tab
  97. Esquirol, A.; Brandon, N.P.; Kilner, J.A.; Mogensen, M. Electrochemical Characterization of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 Cathodes for Intermediate-Temperature SOFCs. J. Electrochem. Soc. 2004, 151, A1847-A1855. [CrossRef] open in new tab
  98. Tietz, F.; Haanappel, V.A.C.; Mai, A.; Mertens, J.; Stöver, D. Performance of LSCF cathodes in cell tests. J. Power Sources 2006, 156, 20-22. [CrossRef] open in new tab
  99. Ricote, S.; Bonanos, N.; Rørvik, P.M.; Haavik, C. Microstructure and performance of La 0.58 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ cathodes deposited on BaCe 0.2 Zr 0.7 Y 0.1 O 3−δ by infiltration and spray pyrolysis. J. Power Sources 2012, 209, 172-179. [CrossRef] open in new tab
  100. Sun, S.; Cheng, Z. Electrochemical Behaviors for Ag, LSCF and BSCF as Oxygen Electrodes for Proton Conducting IT-SOFC. J. Electrochem. Soc. 2017, 164, F3104-F3113. [CrossRef] open in new tab
  101. Bishop, S.R.; Duncan, K.L.; Wachsman, E.D. Surface and Bulk Defect Equilibria in Strontium-Doped Lanthanum Cobalt Iron Oxide. J. Electrochem. Soc. 2009, 156, B1242-B1248. [CrossRef] open in new tab
  102. Bishop, S.R.; Duncan, K.L.; Wachsman, E.D. Thermo-Chemical Expansion in Strontium-Doped Lanthanum Cobalt Iron Oxide. J. Am. Ceram. Soc. 2010, 93, 4115-4121. [CrossRef] open in new tab
  103. Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J. Thermo-chemical lattice expansion in La 0.6 Sr 0.4 Co 1−y Fe y O 3−δ . Solid State Ion. 2013, 241, 12-16. [CrossRef] open in new tab
  104. James, J.D.; Spittle, J.A.; Brown, S.G.R.; Evans, R.W. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas. Sci. Technol. 2001, 12, R1-R15. [CrossRef] open in new tab
  105. Mielewczyk-Gryn, A.; Gdula-Kasica, K.; Kusz, B.; Gazda, M. High temperature monoclinic-to-tetragonal phase transition in magnesium doped lanthanum ortho-niobate. Ceram. Int. 2013, 39, 4239-4244. [CrossRef] open in new tab
  106. Huse, M.; Skilbred, A.W.B.; Karlsson, M.; Eriksson, S.G.; Norby, T.; Haugsrud, R.; Knee, C.S. Neutron diffraction study of the monoclinic to tetragonal structural transition in LaNbO 4 and its relation to proton mobility. J. Solid State Chem. 2012, 187, 27-34. [CrossRef] open in new tab
  107. Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65-71. [CrossRef] open in new tab
  108. Le Bail, A.; Duroy, H.; Fourquet, J.L. Ab-initio structure determination of LiSbWO 6 by X-ray powder diffraction. Mater. Res. Bull. 1988, 23, 447-452. [CrossRef] open in new tab
  109. Tsvetkov, D.S.; Sereda, V.V.; Zuev, A.Y. Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo 2 O 6−δ . Solid State Ion. 2010, 180, 1620-1625. [CrossRef] open in new tab
  110. Zuev, A.Y.; Tsvetkov, D.S. Conventional Methods for Measurements of Chemo-Mechanical Coupling. In Electro-Chemo-Mechanics of Solids; Bishop, S.R., Perry, N.H., Marrocchelli, D., Sheldon, B., Eds.; Springer: New York, NY, USA, 2017; pp. 5-33, ISBN 9783319514055. open in new tab
  111. Nedeltcheva, T.; Simeonova, P.; Lovchinov, V. Improved iodometric method for simultaneous determination of non-stoichiometric oxygen and total copper content in YBCO superconductors. Anal. Chim. Acta 1995, 312, 227-229. [CrossRef] open in new tab
  112. Rørmark, L.; Wiik, K.; Stølen, S.; Grande, T. Oxygen stoichiometry and structural properties of La 1−x A x MnO 3±δ (A = Ca or Sr and 0 ≤ x ≤ 1). J. Mater. Chem. 2002, 12, 1058-1067. [CrossRef] open in new tab
  113. Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562. [CrossRef] open in new tab
  114. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5. [CrossRef] open in new tab
  115. Vinet, P.; Smith, J.R.; Ferrante, J.; Rose, J.H. Temperature effects on the universal equation of state of solids. Phys. Rev. B 1987, 35, 1945-1953. [CrossRef] open in new tab
  116. Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809-824. [CrossRef] open in new tab
  117. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519. [CrossRef] open in new tab
  118. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255-268. [CrossRef] open in new tab
  119. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695-1697. [CrossRef] open in new tab
  120. Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690. [CrossRef] open in new tab
  121. Zhao, Y.; Weidner, D.J. Thermal expansion of SrZrO 3 and BaZrO 3 perovskites. Phys. Chem. Miner. 1991, 18, 294-301. [CrossRef] open in new tab
  122. Hudish, G.; Manerbino, A.; Coors, W.G.; Ricote, S. = 0 and 0.2) upon hydration determined by high-temperature X-ray diffraction. J. Am. Ceram. Soc. 2018, 101, 1298-1309. [CrossRef] open in new tab
  123. Hiraiwa, C.; Han, D.; Kuramitsu, A.; Kuwabara, A.; Takeuchi, H.; Majima, M.; Uda, T. Chemical Expansion and Change in Lattice Constant of Y-Doped BaZrO 3 by Hydration/Dehydration Reaction and Final Heat-Treating Temperature. J. Am. Ceram. Soc. 2013, 96, 879-884. [CrossRef] open in new tab
  124. Lein, H.L.; Wiik, K.; Grande, T. Thermal and chemical expansion of mixed conducting La 0.5 Sr 0.5 Fe 1−x Co x O 3−δ materials. Solid State Ion. 2006, 177, 1795-1798. [CrossRef] open in new tab
  125. Chen, X.; Yu, J.; Adler, S.B. Thermal and Chemical Expansion of Sr-Doped Lanthanum Cobalt Oxide (La 1−x Sr x CoO 3−δ ). Chem. Mater. 2005, 17, 4537-4546. [CrossRef] open in new tab
  126. Fossdal, A.; Menon, M.; Waernhus, I.; Wiik, K.; Einarsrud, M.A.; Grande, T. Crystal Structure and Thermal Expansion of La 1−x Sr x FeO 3−δ Materials. J. Am. Ceram. Soc. 2005, 87, 1952-1958. [CrossRef] open in new tab
  127. Hashimoto, S.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J. Thermal and chemical lattice expansibility of La 0.6 Sr 0.4 Co 1−y Fe y O 3−δ (y = 0.2, 0.4, 0.6 and 0.8). Solid State Ion. 2011, 186, 37-43. [CrossRef] open in new tab
  128. Kuhn, M.; Hashimoto, S.; Sato, K.; Yashiro, K.; Mizusaki, J. Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La 0.6 Sr 0.4 FeO 3−δ . Solid State Ion. 2011, 195, 7-15. [CrossRef] open in new tab
  129. Mather, G.C.; Heras-Juaristi, G.; Ritter, C.; Fuentes, R.O.; Chinelatto, A.L.; Pérez-Coll, D.; Amador, U. Phase Transitions, Chemical Expansion, and Deuteron Sites in the BaZr0.7Ce0.2Y0.1O3−δ Proton Conductor. Chem. Mater. 2016, 28, 4292-4299. [CrossRef] open in new tab
  130. Kerner, E.H. The Elastic and Thermo-elastic Properties of Composite Media. Proc. Phys. Soc. Sect. B 1956, 69, 808-813. [CrossRef] open in new tab
  131. Pratihar, S.K.; Dassharma, A.; Maiti, H.S. Properties of Ni/YSZ porous cermets prepared by electroless coating technique for SOFC anode application. J. Mater. Sci. 2007, 42, 7220-7226. [CrossRef] open in new tab
  132. Coble, R.L.; Kingery, W.D. Effect of Porosity on Physical Properties of Sintered Alumina. J. Am. Ceram. Soc. 1956, 39, 377-385. [CrossRef] open in new tab
  133. Shyam, A.; Bruno, G.; Watkins, T.R.; Pandey, A.; Lara-curzio, E.; Parish, C.M.; Stafford, R.J. Journal of the European Ceramic Society The effect of porosity and microcracking on the thermomechanical properties of cordierite. J. Eur. Ceram. Soc. 2015, 35, 4557-4566. [CrossRef] open in new tab
  134. Mori, M.; Yamamoto, T.; Itoh, H.; Inaba, H.; Tagawa, H. Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation. J. Electrochem. Soc. 1998, 145, 1374-1381. [CrossRef] open in new tab
  135. Elomari, S.; Skibo, M.D.; Sundarrajan, A.; Richards, H. Thermal expansion behavior of particulate metal-matrix composites. Compos. Sci. Technol. 1998, 58, 369-376. [CrossRef] open in new tab
  136. Sevostianov, I. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech. Mater. 2012, 45, 20-33. [CrossRef] open in new tab
  137. Hayashi, H.; Saitou, T.; Maruyama, N.; Inaba, H.; Kawamura, K.; Mori, M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ion. 2005, 176, 613-619. [CrossRef] open in new tab
  138. Fabbri, E.; Pergolesi, D.; Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 2010, 39, 4355-4369. [CrossRef] [PubMed] open in new tab
  139. Malavasi, L.; Fisher, C.A.J.; Islam, M.S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370-4387. [CrossRef] [PubMed] open in new tab
  140. Norby, T. Proton Conductivity in Perovskite Oxides. In Perovskite Oxide for Solid Oxide Fuel Cells; open in new tab
  141. Ishihara, T., Ed.; Springer: Boston, MA, USA, 2009; pp. 217-241, ISBN 978-0-387-77708-5.
  142. Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 2017, 79, 750-764. [CrossRef] open in new tab
  143. Wang, S.; Zhao, F.; Zhang, L.; Chen, F. Synthesis of BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3−δ proton conducting ceramic by a modified Pechini method. Solid State Ion. 2012, 213, 29-35. [CrossRef] open in new tab
  144. Lagaeva, J.; Medvedev, D.; Demin, A.; Tsiakaras, P. Insights on thermal and transport features of BaCe 0.8−x Zr x Y 0.2 O 3−δ proton-conducting materials. J. Power Sources 2015, 278, 436-444. [CrossRef] open in new tab
  145. Yamazaki, Y.; Hernandez-Sanchez, R.; Haile, S.M. High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate. Chem. Mater. 2009, 21, 2755-2762. [CrossRef] open in new tab
  146. Yamazaki, Y.; Blanc, F.; Okuyama, Y.; Buannic, L.; Lucio-Vega, J.C.; Grey, C.P.; Haile, S.M. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 2013, 12, 647-651. [CrossRef] [PubMed] open in new tab
  147. Ryu, K.H.; Haile, S.M. Chemical stability and proton conductivity of doped BaCeO 3 -BaZrO 3 solid solutions. Solid State Ion. 1999, 125, 355-367. [CrossRef] open in new tab
  148. Haugsrud, R. High Temperature Proton Conductors-Fundamentals and Functionalities. Diffus. Found. 2016, 8, 31-79. [CrossRef] open in new tab
  149. Akbarzadeh, A.R.; Kornev, I.; Malibert, C.; Bellaiche, L.; Kiat, J.M. Combined theoretical and experimental study of the low-temperature properties of BaZrO 3 . Phys. Rev. B 2005, 72, 205104. [CrossRef] open in new tab
  150. Yamanaka, S.; Fujikane, M.; Hamaguchi, T.; Muta, H.; Oyama, T.; Matsuda, T.; Kobayashi, S.; Kurosaki, K. Thermophysical properties of BaZrO 3 and BaCeO 3 . J. Alloys Compd. 2003, 359, 109-113. [CrossRef] open in new tab
  151. Mathews, M.D.; Mirza, E.B.; Momin, A.C. High-temperature X-ray diffractometric studies of CaZrO 3 , SrZrO 3 and BaZrO 3 . J. Mater. Sci. Lett. 1991, 10, 305-306. [CrossRef] open in new tab
  152. Taglieri, G.; Tersigni, M.; Villa, P.L.; Mondelli, C. Synthesis by the citrate route and characterisation of BaZrO 3 , a high tech ceramic oxide: Preliminary results. Int. J. Ind. Chem. 1999, 1, 103-110. [CrossRef] open in new tab
  153. Braun, A.; Ovalle, A.; Pomjakushin, V.; Cervellino, A.; Erat, S.; Stolte, W.C.; Graule, T. Yttrium and hydrogen superstructure and correlation of lattice expansion and proton conductivity in the BaZr 0.9 Y 0.1 O 2.95 proton conductor. Appl. Phys. Lett. 2009, 95, 224103. [CrossRef] open in new tab
  154. Goupil, G.; Delahaye, T.; Gauthier, G.; Sala, B.; Joud, F.L. Stability study of possible air electrode materials for proton conducting electrochemical cells. Solid State Ion. 2012, 209-210, 36-42. [CrossRef] open in new tab
  155. Lyagaeva, Y.G.; Medvedev, D.A.; Demin, A.K.; Tsiakaras, P.; Reznitskikh, O.G. Thermal expansion of materials in the barium cerate-zirconate system. Phys. Solid State 2015, 57, 285-289. [CrossRef] open in new tab
  156. Han, D.; Majima, M.; Uda, T. Structure analysis of BaCe 0wet atmospheres by high-temperature X-ray diffraction measurement. J. Solid State Chem. 2013, 205, 122-128. [CrossRef] open in new tab
  157. Malavasi, L.; Ritter, C.; Chiodelli, G. Correlation between Thermal Properties, Electrical Conductivity, and Crystal Structure in the BaCe 0.80 Y 0.20 O 2.9 Proton Conductor. Chem. Mater. 2008, 20, 2343-2351. [CrossRef] open in new tab
  158. Zhu, Z.; Tao, Z.; Bi, L.; Liu, W. Investigation of SmBaCuCoO 5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Mater. Res. Bull. 2010, 45, 1771-1774. [CrossRef] open in new tab
  159. Zhou, X.; Liu, L.; Zhen, J.; Zhu, S.; Li, B.; Sun, K.; Wang, P. Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process. J. Power Sources 2011, 196, 5000-5006. [CrossRef] open in new tab
  160. Gorelov, V.P.; Balakireva, V.B.; Kuz'min, A.V.; Plaksin, S.V. Electrical conductivity of CaZr 1−x Sc x O 3-delta (x = 0.01-0.20) in dry and humid air. Inorg. Mater. 2014, 50, 495-502. [CrossRef] open in new tab
  161. Yajima, T.; Suzuki, H.; Yogo, T.; Iwahara, H. Protonic conduction in SrZrO 3-based oxides. Solid State Ion. 1992, 51, 101-107. [CrossRef] open in new tab
  162. Hibino, T.; Mizutani, K.; Yajima, T.; Iwahara, H. Evaluation of proton conductivity in SrCeO 3 , BaCeO 3 , CaZrO 3 and SrZrO 3 by temperature programmed desorption method. Solid State Ion. 1992, 57, 303-306. [CrossRef] open in new tab
  163. Matsuda, T.; Yamanaka, S.; Kurosaki, K.; Kobayashi, S. High temperature phase transitions of SrZrO 3 . J. Alloys Compd. 2003, 351, 43-46. [CrossRef] open in new tab
  164. Iwahara, H.; Esaka, T.; Uchida, H.; Yamauchi, T.; Ogaki, K. High temperature type protonic conductor based on SrCeO 3 and its application to the extraction of hydrogen gas. Solid State Ion. 1986, 18-19, 1003-1007. [CrossRef] open in new tab
  165. Yamanaka, S.; Kurosaki, K.; Maekawa, T.; Matsuda, T.; Kobayashi, S.; Uno, M. Thermochemical and thermophysical properties of alkaline-earth perovskites. J. Nucl. Mater. 2005, 344, 61-66. [CrossRef] open in new tab
  166. Li, L.; Nino, J.C. Proton-conducting barium stannates: Doping strategies and transport properties. Int. J. Hydrog. Energy 2013, 38, 1598-1606. [CrossRef] open in new tab
  167. Maekawa, T.; Kurosaki, K.; Yamanaka, S. Thermal and mechanical properties of polycrystalline BaSnO 3 . J. Alloys Compd. 2006, 416, 214-217. [CrossRef] open in new tab
  168. Snijkers, F.M.M.; Buekenhoudt, A.; Luyten, J.J.; Cooymans, J.; Mertens, M. Proton conductivity in perovskite type yttrium doped barium hafnate. Scr. Mater. 2004, 51, 1129-1134. [CrossRef] open in new tab
  169. Maekawa, T.; Kurosaki, K.; Yamanaka, S. Thermal and mechanical properties of perovskite-type barium hafnate. J. Alloys Compd. 2006, 407, 44-48. [CrossRef] open in new tab
  170. Furøy, K.A.; Haugsrud, R.; Hänsel, M.; Magrasó, A.; Norby, T. Role of protons in the electrical conductivity of acceptor-doped BaPrO 3 , BaTbO 3 , and BaThO 3 . Solid State Ion. 2007, 178, 461-467. [CrossRef] open in new tab
  171. Purohit, R.D.; Tyagi, A.K.; Mathews, M.D.; Saha, S. Combustion synthesis and bulk thermal expansion studies of Ba and Sr thorates. J. Nucl. Mater. 2000, 280, 51-55. [CrossRef] open in new tab
  172. Fu, W.T.; Visser, D.; Knight, K.S.; IJdo, D.J.W. Temperature-induced phase transitions in BaTbO 3 . J. Solid State Chem. 2004, 177, 1667-1671. [CrossRef] open in new tab
  173. Nomura, K.; Takeuchi, T.; Tanase, S.; Kageyama, H.; Tanimoto, K.; Miyazaki, Y. Proton conduction in (La 0.9 Sr 0.1 )MIIIO 3−d (MIII = Sc, In, and Lu) perovskites. Solid State Ion. 2002, 155, 647-652. [CrossRef] open in new tab
  174. Gorelov, V.P.; Stroeva, A.Y. Solid proton conducting electrolytes based on LaScO 3 . Russ. J. Electrochem. 2012, 48, 949-960. [CrossRef] open in new tab
  175. Okuyama, Y.; Kozai, T.; Ikeda, S.; Matsuka, M.; Sakai, T.; Matsumoto, H. Incorporation and conduction of proton in Sr-doped LaMO 3 (M = Al, Sc, In, Yb, Y). Electrochim. Acta 2014, 125, 443-449. [CrossRef] open in new tab
  176. Danilov, N.; Vdovin, G.; Reznitskikh, O.; Medvedev, D.; Demin, A.; Tsiakaras, P. Physico-chemical characterization and transport features of proton-conducting Sr-doped LaYO 3 electrolyte ceramics. J. Eur. Ceram. Soc. 2016, 36, 2795-2800. [CrossRef] open in new tab
  177. Dietrich, M.; Vassen, R.; Stover, D. LaYbO 3 , A Candidate for Thermal Barrier Coating Materials. In 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites: A: Ceramic Engineering and Science Proceedings, Volume 24, Issue 3; open in new tab
  178. Ovanesyan, K.; Petrosyan, A.; Shirinyan, G.; Pedrini, C.; Zhang, L. Czochralski single crystal growth of Ce-and Pr-doped LaLuO 3 double oxide. J. Cryst. Growth 1999, 198-199, 497-500. [CrossRef] open in new tab
  179. Inaba, H.; Hayashi, H.; Suzuki, M. Structural phase transition of perovskite oxides LaMO 3 and La 0.9 Sr 0.1 MO 3 with different size of B-site ions. Solid State Ion. 2001, 144, 99-108. [CrossRef] open in new tab
  180. Goldschmidt, V.M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14, 477-485. [CrossRef] open in new tab
  181. Zhao, Y.; Weidner, D.J.; Parise, J.B.; Cox, D.E. Thermal expansion and structural distortion of perovskite-Data for NaMgF 3 perovskite. Part I. Phys. Earth Planet. Inter. 1993, 76, 1-16. [CrossRef] open in new tab
  182. Bohn, H.; Schober, T.; Mono, T.; Schilling, W. The high temperature proton conductor Ba 3 Ca 1.18 Nb 1.82 O 9−δ . I. Electrical conductivity. Solid State Ion. 1999, 117, 219-228. [CrossRef] open in new tab
  183. Krug, F.; Schober, T. The high-temperature proton conductor Ba 3 (Ca 1.18 Nb 1.82 )O 9−gd : Thermogravimetry of the water uptake. Solid State Ion. 1996, 92, 297-302. [CrossRef] open in new tab
  184. Schober, T.; Friedrich, J. The mixed perovskites BaCa (1+x)/3 Nb (2−x)/3 O 3−x/2 (x = 0 . . . 0.18): Proton uptake. Solid State Ion. 2000, 136-137, 161-165. [CrossRef] open in new tab
  185. Bhella, S.S.; Thangadurai, V. Investigations on the thermo-chemical stability and electrical conductivity of K-doped Ba 3−x K x CaNb 2 O 9−δ (x = 0.5, 0.75, 1, 1.25). Solid State Ion. 2011, 192, 229-234. [CrossRef] open in new tab
  186. Wang, S.; Zhao, F.; Zhang, L.; Brinkman, K.; Chen, F. Doping effects on complex perovskite Ba 3 Ca 1.18 Nb 1.82 O 9−δ intermediate temperature proton conductor. J. Power Sources 2011, 196, 7917-7923. [CrossRef] open in new tab
  187. Hassan, D.; Janes, S.; Clasen, R. Proton-conducting ceramics as electrode/electrolyte materials for SOFC's-part I: Preparation, mechanical and thermal properties of sintered bodies. J. Eur. Ceram. Soc. 2003, 23, 221-228. [CrossRef] open in new tab
  188. Mono, T.; Schober, T. Lattice parameter change in water vapor exposed Ba 3 Ca 1.18 Nb 1.82 O 9−δ . Solid State Ion. 1996, 91, 155-159. [CrossRef] open in new tab
  189. Schober, T.; Friedrich, J.; Triefenbach, D.; Tietz, F. Dilatometry of the high-temperature proton conductor Ba 3 Ca 1.18 Nb 1.82 O 9−δ . Solid State Ion. 1997, 100, 173-181. [CrossRef] open in new tab
  190. Jayaraman, V.; Magrez, A.; Caldes, M.; Joubert, O.; Ganne, M.; Piffard, Y.; Brohan, L. Characterization of perovskite systems derived from Ba 2 In 2 O 5 : Part I: The oxygen-deficient Ba 2 In 2(1−x) Ti 2x O 5+x 1−x (0 ≤ x ≤ 1) compounds. Solid State Ion. 2004, 170, 17-24. [CrossRef] open in new tab
  191. Bjørheim, T.S.; Rahman, S.M.H.; Eriksson, S.G.; Knee, C.S.; Haugsrud, R. Hydration Thermodynamics of the Proton Conducting Oxygen-Deficient Perovskite Series BaTi 1−x M x O 3−x/2 with M = In or Sc. Inorg. Chem. 2015, 54, 2858-2865. [CrossRef] [PubMed] open in new tab
  192. Rahman, S.M.H.; Knee, C.S.; Ahmed, I.; Eriksson, S.G.; Haugsrud, R. 50 mol% indium substituted BaTiO 3 : Characterization of structure and conductivity. Int. J. Hydrog. Energy 2012, 37, 7975-7982. [CrossRef] open in new tab
  193. Quarez, E.; Noirault, S.; Caldes, M.T.; Joubert, O. Water incorporation and proton conductivity in titanium substituted barium indate. J. Power Sources 2010, 195, 1136-1141. [CrossRef] open in new tab
  194. Rahman, S.M.H.; Ahmed, I.; Haugsrud, R.; Eriksson, S.G.; Knee, C.S. Characterisation of structure and conductivity of BaTi 0.5 Sc 0.5 O 3−δ . Solid State Ion. 2014, 255, 140-146. [CrossRef] open in new tab
  195. Rahman, S.M.H.; Norberg, S.T.; Knee, C.S.; Biendicho, J.J.; Hull, S.; Eriksson, S.G. Proton conductivity of hexagonal and cubic BaTi 1−x Sc x O 3−δ (0.1 ≤ x ≤ 0.8). Dalton Trans. 2014, 43, 15055-15064. [CrossRef] [PubMed] open in new tab
  196. Noirault, S.; Quarez, E.; Piffard, Y.; Joubert, O. Water incorporation into the Ba 2 (In 1−x M x ) 2 O 5 (M = Sc 3+ 0 ≤ x < 0.5 and M = Y 3+ 0 ≤ x < 0.35) system and protonic conduction. Solid State Ion. 2009, 180, 1157-1163. [CrossRef] open in new tab
  197. Haugsrud, R.; Norby, T. High-Temperature Proton Conductivity in Acceptor-Substituted Rare-Earth Ortho-Tantalates, LnTaO 4 . J. Am. Ceram. Soc. 2007, 90, 1116-1121. [CrossRef] open in new tab
  198. Haugsrud, R.; Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 2006, 5, 193-196. [CrossRef] open in new tab
  199. Bi, Z.; Bridges, C.A.; Kim, J.H.; Huq, A.; Paranthaman, M.P. Phase stability and electrical conductivity of Ca-doped LaNb 1−x Ta x O 4−δ high temperature proton conductors. J. Power Sources 2011, 196, 7395-7403. [CrossRef] open in new tab
  200. Norby, T.; Christiansen, N. Proton conduction in Ca-and Sr-substituted LaPO 4 . Solid State Ion. 1995, 77, 240-243. [CrossRef] open in new tab
  201. Bjørheim, T.S.; Norby, T.; Haugsrud, R. Hydration and proton conductivity in LaAsO 4 . J. Mater. Chem. 2012, 22, 1652-1661. [CrossRef] open in new tab
  202. Toyoura, K.; Matsunaga, K. Hydrogen Bond Dynamics in Proton-Conducting Lanthanum Arsenate. J. Phys. Chem. C 2013, 117, 18006-18012. [CrossRef] open in new tab
  203. Amezawa, K.; Tomii, Y.; Yamamoto, N. High temperature protonic conduction in Ca-doped YPO 4 . Solid State Ion. 2003, 162-163, 175-180. [CrossRef] open in new tab
  204. Mokkelbost, T.; Lein, H.L.; Vullum, P.E.; Holmestad, R.; Grande, T.; Einarsrud, M.A. Thermal and mechanical properties of LaNbO 4 -based ceramics. Ceram. Int. 2009, 35, 2877-2883. [CrossRef] open in new tab
  205. Fjeld, H.; Kepaptsoglou, D.M.; Haugsrud, R.; Norby, T. Charge carriers in grain boundaries of 0.5% Sr-doped LaNbO 4 . Solid State Ion. 2010, 181, 104-109. [CrossRef] open in new tab
  206. Mielewczyk-Gryn, A.; Wachowski, S.; Zagórski, K.; Jasiński, P.; Gazda, M. Characterization of magnesium doped lanthanum orthoniobate synthesized by molten salt route. Ceram. Int. 2015, 41, 7847-7852. [CrossRef] open in new tab
  207. Brandão, A.D.; Gracio, J.; Mather, G.C.; Kharton, V.V.; Fagg, D.P. B-site substitutions in LaNb 1−x M x O 4−δ materials in the search for potential proton conductors (M = Ga, Ge, Si, B, Ti, Zr, P, Al). J. Solid State Chem. 2011, 184, 863-870. [CrossRef] open in new tab
  208. Syvertsen, G.E.; Magrasó, A.; Haugsrud, R.; Einarsrud, M.A.; Grande, T. The effect of cation non-stoichiometry in LaNbO 4 materials. Int. J. Hydrog. Energy 2012, 37, 8017-8026. [CrossRef] open in new tab
  209. Huse, M.; Norby, T.; Haugsrud, R. Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO 4 . Int. J. Hydrog. Energy 2012, 37, 8004-8016. [CrossRef] open in new tab
  210. Depero, L.E.; Sangaletti, L. Cation Sublattice and Coordination Polyhedra in ABO 4 type of Structures. J. Solid State Chem. 1997, 129, 82-91. [CrossRef] open in new tab
  211. Errandonea, D.; Manjon, F. Pressure effects on the structural and electronic properties of ABX 4 scintillating crystals. Prog. Mater. Sci. 2008, 53, 711-773. [CrossRef] open in new tab
  212. Li, H.; Zhou, S.; Zhang, S. The relationship between the thermal expansions and structures of ABO 4 oxides. J. Solid State Chem. 2007, 180, 589-595. [CrossRef] open in new tab
  213. Ishibashi, Y.; Hara, K.; Sawada, A. The ferroelastic transition in some scheelite-type crystals. Phys. B+C 1988, 150, 258-264. [CrossRef] open in new tab
  214. David, W.I.F. High Resolution Neutron Powder Diffraction Studies of the Ferroelastic Phase Transition in LaNbO4. MRS Proc. 1989, 166, 203. [CrossRef] open in new tab
  215. Mokkelbost, T.; Kaus, I.; Haugsrud, R.; Norby, T.; Grande, T.; Einarsrud, M.A. High-Temperature Proton-Conducting Lanthanum Ortho-Niobate-Based Materials. Part II: Sintering Properties and Solubility of Alkaline Earth Oxides. J. Am. Ceram. Soc. 2008, 91, 879-886. [CrossRef] open in new tab
  216. Ivanova, M.; Ricote, S.; Meulenberg, W.A.; Haugsrud, R.; Ziegner, M. Effects of A-and B-site (co-)acceptor doping on the structure and proton conductivity of LaNbO 4 . Solid State Ion. 2012, 213, 45-52. [CrossRef] open in new tab
  217. Mielewczyk-Gryn, A.; Wachowski, S.; Strychalska, J.; Zagórski, K.; Klimczuk, T.; Navrotsky, A.; Gazda, M. Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates. Ceram. Int. 2016, 42, 7054-7059. [CrossRef] open in new tab
  218. Wachowski, S.; Mielewczyk-Gryń, A.; Zagórski, K.; Li, C.; Jasiński, P.; Skinner, S.J.; Haugsrud, R.; Gazda, M. Influence of Sb-substitution on ionic transport in lanthanum orthoniobates. J. Mater. Chem. A 2016, 4, 11696-11707. [CrossRef] open in new tab
  219. Syvertsen, G.E.; Estournès, C.; Fjeld, H.; Haugsrud, R.; Einarsrud, M.; Grande, T.; Menon, M. Spark Plasma Sintering and Hot Pressing of Hetero-Doped LaNbO 4 . J. Am. Ceram. Soc. 2012, 95, 1563-1571. [CrossRef] open in new tab
  220. Mokkelbost, T.; Andersen, Ø.; Strøm, R.A.; Wiik, K.; Grande, T.; Einarsrud, M. High-Temperature Proton-Conducting LaNbO 4 -Based Materials: Powder Synthesis by Spray Pyrolysis. J. Am. Ceram. Soc. 2007, 90, 3395-3400. [CrossRef] open in new tab
  221. Magrasó, A.; Xuriguera, H.; Varela, M.; Sunding, M.F.; Strandbakke, R.; Haugsrud, R.; Norby, T. Novel Fabrication of Ca-Doped LaNbO 4 Thin-Film Proton-Conducting Fuel Cells by Pulsed Laser Deposition. J. Am. Ceram. Soc. 2010, 93, 1874-1878. [CrossRef] open in new tab
  222. Amsif, M.; Marrero-López, D.; Ruiz-Morales, J.C.; Savvin, S.; Núñez, P. Low temperature sintering of LaNbO 4 proton conductors from freeze-dried precursors. J. Eur. Ceram. Soc. 2012, 32, 1235-1244. [CrossRef] open in new tab
  223. Mielewczyk-Gryń, A.; Gdula, K.; Molin, S.; Jasinski, P.; Kusz, B.; Gazda, M. Structure and electrical properties of ceramic proton conductors obtained with molten-salt and solid-state synthesis methods. J. Non. Cryst. Solids 2010, 356, 1976-1979. [CrossRef] open in new tab
  224. Brandão, A.D.; Antunes, I.; Frade, J.R.; Torre, J.; Kharton, V.V.; Fagg, D.P. Enhanced Low-Temperature Proton Conduction in Sr 0.02 La 0.98 NbO 4−δ by Scheelite Phase Retention. Chem. Mater. 2010, 22, 6673-6683. [CrossRef] open in new tab
  225. Santibáñez-Mendieta, A.B.; Fabbri, E.; Licoccia, S.; Traversa, E. Tailoring phase stability and electrical conductivity of Sr 0.02 La 0.98 Nb 1−x Ta x O 4 for intermediate temperature fuel cell proton conducting electrolytes. Solid State Ion. 2012, 216, 6-10. [CrossRef] open in new tab
  226. Wachowski, S.L.; Kamecki, B.; Winiarz, P.; Dzierzgowski, K.; Mielewczyk-Gryń, A.; Gazda, M.; Wachowski, S.L.; Jasiński, P.; Witkowska, A.; Gazda, M.; et al. Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site. Inorg. Chem. Front. 2018, 24, 1-16. [CrossRef] open in new tab
  227. Jian, L.; Wayman, C.M. Compressive behavior and domain-related shape memory effect in LaNbO 4 ceramics. Mater. Lett. 1996, 26, 1-7. [CrossRef] open in new tab
  228. Parlinski, K.; Hashi, Y.; Tsunekawa, S.; Kawazoe, Y. Computer simulation of ferroelastic phase transition in LaNbO 4 . J. Mater. Res. 1997, 12, 2428-2437. [CrossRef] open in new tab
  229. Sarin, P.; Hughes, R.W.; Lowry, D.R.; Apostolov, Z.D.; Kriven, W.M. High-Temperature Properties and Ferroelastic Phase Transitions in Rare-Earth Niobates (LnNbO 4 ). J. Am. Ceram. Soc. 2014, 97, 3307-3319. [CrossRef] open in new tab
  230. Hikichi, Y.; Ota, T.; Daimon, K.; Hattori, T. Thermal, Mechanical, and Chemical Properties of Sintered Xenotime-Type RPO 4 (R = Y, Er, Yb, or Lu). J. Am. Ceram. Soc. 1998, 81, 2216-2218. [CrossRef] open in new tab
  231. Bayer, G. Thermal expansion of ABO 4 -compounds with zircon-and scheelite structures. J. Less Common Met. 1972, 26, 255-262. [CrossRef] open in new tab
  232. Hikichi, Y.; Ota, T.; Hattori, T. Thermal, mechanical and chemical properties of sintered monazite-(La, Ce, Nd or Sm). Mineral. J. 1997, 19, 123-130. [CrossRef] open in new tab
  233. Omori, M.; Kobayashi, Y.; Hirai, T. Dilatometric behavior of martensitic transformation of NdNbO 4 polycrystals. J. Mater. Sci. 2000, 35, 719-721. [CrossRef] open in new tab
  234. Filatov, S.K. General concept of increasing crystal symmetry with an increase in temperature. Crystallogr. Rep. 2011, 56, 953-961. [CrossRef] open in new tab
  235. Akiyama, K.; Nagano, I.; Shida, M.; Ota, S. Thermal Barrier Coating Material. U.S. Patent No. 7,622,411, 24 November 2009.
  236. Yang, H.; Peng, F.; Zhang, Q.; Guo, C.; Shi, C.; Liu, W.; Sun, G.; Zhao, Y.; Zhang, D.; Sun, D.; et al. A promising high-density scintillator of GdTaO 4 single crystal. CrystEngComm 2014, 16, 2480-2485. [CrossRef] open in new tab
  237. Li, H.; Zhang, S.; Zhou, S.; Cao, X. Bonding characteristics, thermal expansibility, and compressibility of RXO 4 (R = Rare Earths, X = P, As) within monazite and zircon structures. Inorg. Chem. 2009, 48, 4542-4548. [CrossRef] [PubMed] open in new tab
  238. Huse, M.; Norby, T.; Haugsrud, R. Proton Conductivity in Acceptor-Doped LaVO 4 . J. Electrochem. Soc. 2011, 158, B857-B865. [CrossRef] open in new tab
  239. Zhang, S.; Zhou, S.; Li, H.; Li, N. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method. Inorg. Chem. 2008, 47, 7863-7867. [CrossRef] [PubMed] open in new tab
  240. Bjørheim, T.S.; Besikiotis, V.; Haugsrud, R. Hydration thermodynamics of pyrochlore structured oxides from TG and first principles calculations. Dalton Trans. 2012, 41, 13343-13351. [CrossRef] [PubMed] open in new tab
  241. Omata, T.; Ikeda, K.; Tokashiki, R.; Otsuka-Yao-Matsuo, S. Proton solubility for La 2 Zr 2 O 7 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ion. 2004, 167, 389-397. [CrossRef] open in new tab
  242. Eurenius, K.E.J.; Ahlberg, E.; Knee, C.S. Proton conductivity in Ln 1.96 Ca 0.04 Sn 2 O 7−δ (Ln = La, Sm, Yb) pyrochlores as a function of the lanthanide size. Solid State Ion. 2010, 181, 1258-1263. [CrossRef] open in new tab
  243. Eurenius, K.E.J.; Ahlberg, E.; Ahmed, I.; Eriksson, S.G.; Knee, C.S. Investigation of proton conductivity in Sm 1.92 Ca 0.08 Ti 2 O 7−δ and Sm 2 Ti 1.92 Y 0.08 O 7−δ pyrochlores. Solid State Ion. 2010, 181, 148-153. [CrossRef] open in new tab
  244. Eurenius, K.E.J.; Ahlberg, E.; Knee, C.S. Proton conductivity in Sm 2 Sn 2 O 7 pyrochlores. Solid State Ion. 2010, 181, 1577-1585. [CrossRef] open in new tab
  245. Omata, T.; Otsuka-Yao-Matsuo, S. Electrical Properties of Proton-Conducting Ca-Doped La 2 Zr 2 O 7 with a Pyrochlore-Type Structure. J. Electrochem. Soc. 2001, 148, E252-E261. [CrossRef] open in new tab
  246. Shimura, T.; Komori, M.; Iwahara, H. Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature. Solid State Ion. 1996, 86-88, 685-689. [CrossRef] open in new tab
  247. Ma, W.; Gong, S.; Xu, H.; Cao, X. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scr. Mater. 2006, 54, 1505-1508. [CrossRef] open in new tab
  248. Besikiotis, V.; Ricote, S.; Jensen, M.H.; Norby, T.; Haugsrud, R. Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate-zirconate based compounds. Solid State Ion. 2012, 229, 26-32. [CrossRef] open in new tab
  249. Kalland, L.E.; Norberg, S.T.; Kyrklund, J.; Hull, S.; Eriksson, S.G.; Norby, T.; Mohn, C.E.; Knee, C.S. C-type related order in the defective fluorites La 2 Ce 2 O 7 and Nd 2 Ce 2 O 7 studied by neutron scattering and ab initio MD simulations. Phys. Chem. Chem. Phys. 2016, 18, 24070-24080. [CrossRef] [PubMed] open in new tab
  250. Zhang, F.X.X.; Tracy, C.L.L.; Lang, M.; Ewing, R.C.C. Stability of fluorite-type La 2 Ce 2 O 7 under extreme conditions. J. Alloys Compd. 2016, 674, 168-173. [CrossRef] open in new tab
  251. Wang, J.; Bai, S.; Zhang, H.; Zhang, C. The structure, thermal expansion coefficient and sintering behavior of Nd 3+ -doped La 2 Zr 2 O 7 for thermal barrier coatings. J. Alloys Compd. 2009, 476, 89-91. [CrossRef] open in new tab
  252. Lehmann, H.; Pitzer, D.; Pracht, G.; Vassen, R.; Stöver, D. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Am. Ceram. Soc. 2003, 86, 1338-1344. [CrossRef] open in new tab
  253. Haugsrud, R. Defects and transport properties in Ln 6 WO 12 (Ln = La, Nd, Gd, Er). Solid State Ion. 2007, 178, 555-560. [CrossRef] open in new tab
  254. Zayas-Rey, M.J.; dos Santos-Gómez, L.; Marrero-López, D.; León-Reina, L.; Canales-Vázquez, J.; Aranda, M.A.G.; Losilla, E.R. Structural and Conducting Features of Niobium-Doped Lanthanum Tungstate, La 27 (W 1−x Nb x ) 5 O 55.55−δ . Chem. Mater. 2013, 25, 448-456. [CrossRef] open in new tab
  255. Magrasó, A.; Haugsrud, R. Effects of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La 28−x W 4+x O 54+δ . A review. J. Mater. Chem. A 2014, 2, 12630-12641. [CrossRef] open in new tab
  256. Magrasó, A.; Hervoches, C.H.; Ahmed, I.; Hull, S.; Nordström, J.; Skilbred, A.W.B.; Haugsrud, R. In situ high temperature powder neutron diffraction study of undoped and Ca-doped La 28−x W 4+x O 54+3x/2 (x = 0.85). open in new tab
  257. J. Mater. Chem. A 2013, 1, 3774-3782. [CrossRef] open in new tab
  258. Hancke, R.; Magrasó, A.; Norby, T.; Haugsrud, R. Hydration of lanthanum tungstate (La/W=5.6 and 5.3) studied by TG and simultaneous TG-DSC. Solid State Ion. 2013, 231, 25-29. [CrossRef] open in new tab
  259. Quarez, E.; Kravchyk, K.V.; Joubert, O. Compatibility of proton conducting La 6 WO 12 electrolyte with standard cathode materials. Solid State Ion. 2012, 216, 19-24. [CrossRef] open in new tab
  260. Seeger, J.; Ivanova, M.E.; Meulenberg, W.A.; Sebold, D.; Stöver, D.; Scherb, T.; Schumacher, G.; Escolástico, S.; Solís, C.; Serra, J.M. Synthesis and characterization of nonsubstituted and substituted proton-conducting La 6−x WO 12−y . Inorg. Chem. 2013, 52, 10375-10386. [CrossRef] [PubMed] open in new tab
  261. Zayas-Rey, M.J.; dos Santos-Gómez, L.; Cabeza, A.; Marrero-López, D.; Losilla, E.R. Proton conductors based on alkaline-earth substituted La 28−x W 4+x O 54+3x/2 . Dalton Trans. 2014, 43, 6490-6499. [CrossRef] [PubMed] open in new tab
  262. Peng, R.; Wu, T.; Liu, W.; Liu, X.; Meng, G. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 2010, 20, 6218-6225. [CrossRef] open in new tab
  263. Merkle, R.; Poetzsch, D.; Maier, J. Oxygen Reduction Reaction at Cathodes on Proton Conducting Oxide Electrolytes: Contribution from Three Phase Boundary Compared to Bulk Path. ECS Trans. 2015, 66, 95-102. [CrossRef] open in new tab
  264. Téllez Lozano, H.; Druce, J.; Cooper, S.J.; Kilner, J.A. Double perovskite cathodes for proton-conducting ceramic fuel cells: Are they triple mixed ionic electronic conductors? Sci. Technol. Adv. Mater. 2017, 18, 977-986. [CrossRef] [PubMed] open in new tab
  265. Strandbakke, R.; Cherepanov, V.A.; Zuev, A.Y.; Tsvetkov, D.S.; Argirusis, C.; Sourkouni, G.; Prünte, S.; Norby, T. Gd-and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ion. 2015, 278, 120-132. [CrossRef] open in new tab
  266. Zohourian, R.; Merkle, R.; Maier, J. Proton uptake into the protonic cathode material BaCo 0.4 Fe 0.4 Zr 0.2 O 3−δ and comparison to protonic electrolyte materials. Solid State Ion. 2017, 299, 64-69. [CrossRef] open in new tab
  267. Bernuy-Lopez, C.; Rioja-Monllor, L.; Nakamura, T.; Ricote, S.; O'Hayre, R.; Amezawa, K.; Einarsrud, M.A.; Grande, T. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes. Materials 2018, 11, 196. [CrossRef] [PubMed] open in new tab
  268. Zhao, L.; He, B.; Ling, Y.; Xun, Z.; Peng, R.; Meng, G.; Liu, X. Cobalt-free oxide Ba 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3−δ for proton-conducting solid oxide fuel cell cathode. Int. J. Hydrog. Energy 2010, 35, 3769-3774. [CrossRef] open in new tab
  269. Grimaud, A.; Mauvy, F.; Bassat, J.M.; Fourcade, S.; Rocheron, L.; Marrony, M.; Grenier, J.C. Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as H + -SOFC Cathodes. J. Electrochem. Soc. 2012, 159, B683-B694. [CrossRef] open in new tab
  270. Dailly, J.; Fourcade, S.; Largeteau, A.; Mauvy, F.; Grenier, J.C.; Marrony, M. Perovskite and A 2 MO 4 -type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim. Acta 2010, 55, 5847-5853. [CrossRef] open in new tab
  271. Shang, M.; Tong, J.; O'Hayre, R. A promising cathode for intermediate temperature protonic ceramic fuel cells: BaCo 0.4 Fe 0.4 Zr 0.2 O 3−δ . RSC Adv. 2013, 3, 15769-15775. [CrossRef] open in new tab
  272. Tao, Z.; Bi, L.; Zhu, Z.; Liu, W. Novel cobalt--conducting solid oxide fuel cells. J. Power Sources 2009, 194, 801-804. [CrossRef] open in new tab
  273. Poetzsch, D.; Merkle, R.; Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 2014, 16, 16446-16453. [CrossRef] [PubMed] open in new tab
  274. Poetzsch, D.; Merkle, R.; Maier, J. Proton uptake in the H + -SOFC cathode material Ba 0.5 Sr 0.5 Fe 0.8 Zn 0.2 O 3−δ : Transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 2015, 182, 129-143. [CrossRef] [PubMed] open in new tab
  275. Mukundan, R.; Davies, P.K.; Worrell, W.L. Electrochemical Characterization of Mixed Conducting Ba(Ce 0.8−y Pr y Gd 0.2 )O 2.9 Cathodes. J. Electrochem. Soc. 2001, 148, A82-A86. [CrossRef] open in new tab
  276. Yang, L.; Liu, Z.; Wang, S.; Choi, Y.; Zuo, C.; Liu, M. A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. J. Power Sources 2010, 195, 471-474. [CrossRef] open in new tab
  277. Tao, Z.; Bi, L.; Yan, L.; Sun, W.; Zhu, Z.; Peng, R.; Liu, W. A novel single phase cathode material for a proton-conducting SOFC. Electrochem. Commun. 2009, 11, 688-690. [CrossRef] open in new tab
  278. Wu, T.; Zhao, Y.; Peng, R.; Xia, C. Nano-sized Sm 0.5 Sr 0.5 CoO 3−δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe 0.8 Sm 0.2 O 2.9 . Electrochim. Acta 2009, 54, 4888-4892. [CrossRef] open in new tab
  279. Upasen, S.; Batocchi, P.; Mauvy, F.; Slodczyk, A.; Colomban, P. Chemical and structural stability of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ ceramic vs. medium/high water vapor pressure. Ceram. Int. 2015, 41, 14137-14147. [CrossRef] open in new tab
  280. Pu, T.; Tan, W.; Shi, H.; Na, Y.; Lu, J.; Zhu, B. Steam/CO 2 electrolysis in symmetric solid oxide electrolysis cell with barium cerate-carbonate composite electrolyte. Electrochim. Acta 2016, 190, 193-198. [CrossRef] open in new tab
  281. Lin, B.; Dong, Y.; Yan, R.; Zhang, S.; Hu, M.; Zhou, Y.; Meng, G. In situ screen-printed BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo 2 O 5+x cathode. J. Power Sources 2009, 186, 446-449. [CrossRef] open in new tab
  282. Kim, J.; Sengodan, S.; Kwon, G.; Ding, D.; Shin, J.; Liu, M.; Kim, G. Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells. ChemSusChem 2014, 7, 2811-2815. [CrossRef] [PubMed] open in new tab
  283. Lin, B.; Zhang, S.; Bi, L.; Ding, H.; Liu, X.; Gao, J.; Meng, G. Prontonic ceramic membrane fuel cells with layered GdBaCo 2 O 5+x cathode prepared by gel-casting and suspension spray. J. Power Sources 2008, 177, 330-333. [CrossRef] open in new tab
  284. Brieuc, F.; Dezanneau, G.; Hayoun, M.; Dammak, H. Proton diffusion mechanisms in the double perovskite cathode material GdBaCo 2 O 5.5 : A molecular dynamics study. Solid State Ion. 2017, 309, 187-191. [CrossRef] open in new tab
  285. Zhao, L.; He, B.; Lin, B.; Ding, H.; Wang, S.; Ling, Y.; Peng, R.; Meng, G.; Liu, X. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo 2 O 5+δ cathode. J. Power Sources 2009, 194, 835-837. [CrossRef] open in new tab
  286. Ding, H.; Xue, X.; Liu, X.; Meng, G. A novel layered perovskite cathode for proton conducting solid oxide fuel cells. J. Power Sources 2010, 195, 775-778. [CrossRef] open in new tab
  287. Nian, Q.; Zhao, L.; He, B.; Lin, B.; Peng, R.; Meng, G.; Liu, X. Layered SmBaCuCoO 5+δ and SmBaCuFeO 5+δ perovskite oxides as cathode materials for proton-conducting SOFCs. J. Alloys Compd. 2010, 492, 291-294. [CrossRef] open in new tab
  288. Zhao, L.; He, B.; Nian, Q.; Xun, Z.; Peng, R.; Meng, G.; Liu, X. In situ drop-coated BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ electrolyte-based proton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO 5+δ cathode. J. Power Sources 2009, 194, 291-294. [CrossRef] open in new tab
  289. Taillades, G.; Dailly, J.; Taillades-Jacquin, M.; Mauvy, F.; Essouhmi, A.; Marrony, M.; Lalanne, C.; Fourcade, S.; Jones, D.J.; Grenier, J.C.; et al. Intermediate temperature anode-supported fuel cell based on BaCe 0.9 Y 0.1 O 3 electrolyte with novel Pr 2 NiO 4 cathode. Fuel Cells 2010, 10, 166-173. [CrossRef] open in new tab
  290. Nasani, N.; Ramasamy, D.; Mikhalev, S.; Kovalevsky, A.V.; Fagg, D.P. Fabrication and electrochemical performance of a stable, anode supported thin BaCe 0.4 Zr 0.4 Y 0.2 O 3−δ electrolyte Protonic Ceramic Fuel Cell. J. Power Sources 2015, 278, 582-589. [CrossRef] open in new tab
  291. Upasen, S.; Batocchi, P.; Mauvy, F.; Slodczyk, A.; Colomban, P. Protonation and structural/chemical stability of Ln 2 NiO 4+δ ceramics vs. H 2 O/CO 2 : High temperature/water pressure ageing tests. J. Alloys Compd. 2014, 622, 1074-1085. [CrossRef] open in new tab
  292. Zhao, H.; Mauvy, F.; Lalanne, C.; Bassat, J.M.; Fourcade, S.; Grenier, J.C. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La 2−x NiO 4+δ . Solid State Ion. 2008, 179, 2000-2005. [CrossRef] open in new tab
  293. Wang, J.; Zhou, J.; Wang, T.; Chen, G.; Wu, K.; Cheng, Y. Decreasing the polarization resistance of LaSrCoO 4 cathode by Fe substitution for Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3 based protonic ceramic fuel cells. J. Alloys Compd. 2016, 689, 581-586. [CrossRef] open in new tab
  294. Acuña, W.; Tellez, J.F.; Macías, M.A.; Roussel, P.; Ricote, S.; Gauthier, G.H. Synthesis and characterization of BaGa 2 O 4 and Ba 3 Co 2 O 6 (CO 3 ) 0.6 compounds in the search of alternative materials for Proton Ceramic Fuel Cell (PCFC). Solid State Sci. 2017, 71, 61-68. [CrossRef] open in new tab
  295. Danilov, N.A.; Tarutin, A.P.; Lyagaeva, J.G.; Pikalova, E.Y.; Murashkina, A.A.; Medvedev, D.A.; Patrakeev, M.V.; Demin, A.K. Affinity of YBaCo 4 O 7+δ -based layered cobaltites with protonic conductors of cerate-zirconate family. Ceram. Int. 2017, 43, 15418-15423. [CrossRef] open in new tab
  296. Kinyanjui, F.G.; Norberg, S.T.; Knee, C.S.; Eriksson, S.G. Proton conduction in oxygen deficient Ba 3 In 1.4 Y 0.3 M 0.3 ZrO 8 (M = Ga 3+ or Gd 3+ ) perovskites. J. Alloys Compd. 2014, 605, 56-62. [CrossRef] open in new tab
  297. Yahia, H.B.; Mauvy, F.; Grenier, J.C. Ca 3−x La x Co 4 O 9+δ (x = 0, 0.3): New cobaltite materials as cathodes for proton conducting solid oxide fuel cell. J. Solid State Chem. 2010, 183, 527-531. [CrossRef] open in new tab
  298. Macias, M.A.; Sandoval, M.V.; Martinez, N.G.; Vázquez-Cuadriello, S.; Suescun, L.; Roussel, P.;Świerczek, K.; Gauthier, G.H. Synthesis and preliminary study of La 4 BaCu 5 O 13+δ and La 6.4 Sr 1.6 Cu 8 O 20±δ ordered perovskites as SOFC/PCFC electrode materials. Solid State Ion. 2016, 288, 68-75. [CrossRef] open in new tab
  299. Lin, B.; Ding, H.; Dong, Y.; Wang, S.; Zhang, X.; Fang, D.; Meng, G. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ -BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ composite cathode. J. Power Sources 2009, 186, 58-61. [CrossRef] open in new tab
  300. Yang, L.; Wang, S.; Lou, X.; Liu, M. Electrical conductivity and electrochemical performance of cobalt-doped BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ cathode. Int. J. Hydrog. Energy 2011, 36, 2266-2270. [CrossRef] open in new tab
  301. Sun, W.; Yan, L.; Lin, B.; Zhang, S.; Liu, W. High performance proton-conducting solid oxide fuel cells with a stable Sm 0.5 Sr 0.5 Co 3−δ -Ce 0.8 Sm 0.2 O 2−δ composite cathode. J. Power Sources 2010, 195, 3155-3158. [CrossRef] open in new tab
  302. Sun, W.; Zhu, Z.; Jiang, Y.; Shi, Z.; Yan, L.; Liu, W. Optimization of BaZr 0δ -based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La 0.7 Sr 0.3 FeO 3−δ -Ce 0.8 Sm 0.2 O 2−δ composite cathode. Int. J. Hydrog. Energy 2011, 36, 9956-9966. [CrossRef] open in new tab
  303. Fabbri, E.; Licoccia, S.; Traversa, E.; Wachsman, E.D. Composite cathodes for proton conducting electrolytes. Fuel Cells 2009, 9, 128-138. [CrossRef] open in new tab
  304. Yang, C.; Xu, Q. A functionally graded cathode for proton-conducting solid oxide fuel cells. J. Power Sources 2012, 212, 186-191. [CrossRef] open in new tab
  305. Fabbri, E.; Bi, L.; Pergolesi, D.; Traversa, E. High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ. Sci. 2011, 4, 4984-4993. [CrossRef] open in new tab
  306. Vert, V.B.; Solís, C.; Serra, J.M. Electrochemical properties of PSFC-BCYb composites as cathodes for proton conducting solid oxide fuel cells. Fuel Cells 2011, 11, 81-90. [CrossRef] open in new tab
  307. Yang, C.; Zhang, X.; Zhao, H.; Shen, Y.; Du, Z.; Zhang, C. Electrochemical properties of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ -Nd 1.95 NiO 4+δ composite cathode for protonic ceramic fuel cells. Int. J. Hydrog. Energy 2015, 40, 2800-2807. [CrossRef] open in new tab
  308. Dailly, J.; Taillades, G.; Ancelin, M.; Pers, P.; Marrony, M. High performing BaCe 0 open in new tab
  309. Sr 0.5 CoO 3−δ based protonic ceramic fuel cell. J. Power Sources 2017, 361, 221-226. [CrossRef] open in new tab
  310. Li, G.; Zhang, Y.; Ling, Y.; He, B.; Xu, J.; Zhao, L. Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells. Int. J. Hydrog. Energy 2016, 41, 5074-5083. [CrossRef] open in new tab
  311. Bausá, N.; Solís, C.; Strandbakke, R.; Serra, J.M. Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ion. 2017, 306, 62-68. [CrossRef] open in new tab
  312. Li, H.; Chen, X.; Chen, S.; Wu, Y.; Xie, K. Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer. Int. J. Hydrog. Energy 2015, 40, 7920-7931. [CrossRef] open in new tab
  313. Ding, H.; Sullivan, N.P.; Ricote, S. Double perovskite Ba 2 FeMoO 6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ion. 2017, 306, 97-103. [CrossRef] open in new tab
  314. Robinson, S.; Manerbino, A.; Coors, W.G. Galvanic hydrogen pumping in the protonic ceramic perovskite BaCe 0.2 Zr 0.7 Y 0.1 O 3−δ . J. Membr. Sci. 2013, 446, 99-105. [CrossRef] open in new tab
  315. Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Manerbino, A.; Coors, W.G.; Stoukides, M. Methane steam reforming at low temperatures in a BaZr 0.7 Ce 0.2 Y 0.1 O 2.9 proton conducting membrane reactor. Appl. Catal. B Environ. 2016, 186, 1-9. [CrossRef] open in new tab
  316. Shen, C.T.; Lee, Y.H.; Xie, K.; Yen, C.P.; Jhuang, J.W.; Lee, K.R.; Lee, S.W.; Tseng, C.J. Correlation between microstructure and catalytic and mechanical properties during redox cycling for Ni-BCY and Ni-BCZY composites. Ceram. Int. 2017, 43, S671-S674. [CrossRef] open in new tab
  317. Nasani, N.; Ramasamy, D.; Antunes, I.; Perez, J.; Fagg, D.P. Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs)-A comparative study. Electrochim. Acta 2015, 154, 387-396. [CrossRef] open in new tab
  318. Nasani, N.; Ramasamy, D.; Brandão, A.D.; Yaremchenko, A.A.; Fagg, D.P. The impact of porosity, pH 2 and pH 2 O on the polarisation resistance of Ni-BaZr 0.85 Y 0.15 O 3−δ cermet anodes for Protonic Ceramic Fuel Cells (PCFCs). Int. J. Hydrog. Energy 2014, 39, 21231-21241. [CrossRef] open in new tab
  319. Pikalova, E.; Medvedev, D. Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO 3 -based protonic ceramic fuel cell. Int. J. Hydrog. Energy 2016, 41, 4016-4025. [CrossRef] open in new tab
  320. Park, Y.E.; Ji, H.I.; Kim, B.K.; Lee, J.H.; Lee, H.W.; Park, J.S. Pore structure improvement in cermet for anode-supported protonic ceramic fuel cells. Ceram. Int. 2013, 39, 2581-2587. [CrossRef] open in new tab
  321. Taillades, G.; Pers, P.; Mao, V.; Taillades, M. High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying. Int. J. Hydrog. Energy 2016, 41, 12330-12336. [CrossRef] open in new tab
  322. Li, G.; Jin, H.; Cui, Y.; Gui, L.; He, B.; Zhao, L. Application of a novel (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Nb 0.05 )O 4+δ - infiltrated BaZr 0.1 Ce 0.7 Y 0.2 O 3−δ cathode for high performance protonic ceramic fuel cells. J. Power Sources 2017, 341, 192-198. [CrossRef] open in new tab
  323. Ricote, S.; Bonanos, N.; Lenrick, F.; Wallenberg, R. LaCoO 3 : Promising cathode material for protonic ceramic fuel cells based on BaCe 0.2 Zr 0.7 Y 0.1 O 3-delta electrolyte. J. Power Sources 2012, 218, 313-319. [CrossRef] open in new tab
  324. Babiniec, S.M.; Ricote, S.; Sullivan, N.P. Characterization of ionic transport through BaCe 0.2 Zr 0.7 Y 0.1 O 3−δ membranes in galvanic and electrolytic operation. Int. J. Hydrog. Energy 2015, 40, 9278-9286. [CrossRef] open in new tab
  325. Strandbakke, R.; Vøllestad, E.; Robinson, S.A.; Fontaine, M.L.; Norby, T. open in new tab
  326. Ce 0.2 Y 0.1 O 3 Backbones as Electrode Material for Proton Ceramic Electrolytes. J. Electrochem. Soc. 2017, 164, F196-F202. [CrossRef] open in new tab
  327. Song, S.H.; Yoon, S.E.; Choi, J.; Kim, B.K.; Park, J.S. A high-performance ceramic composite anode for protonic ceramic fuel cells based on lanthanum strontium vanadate. Int. J. Hydrog. Energy 2014, 39, 16534-16540. [CrossRef] open in new tab
  328. Lapina, A.; Chatzichristodoulou, C.; Holtappels, P.; Mogensen, M. Composite Fe-BaCe open in new tab
  329. Anodes for Proton Conductor Fuel Cells. J. Electrochem. Soc. 2014, 161, F833-F837. [CrossRef] open in new tab
  330. Miyazaki, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Development of Ni-Ba(Zr,Y)O 3 cermet anodes for direct ammonia-fueled solid oxide fuel cells. J. Power Sources 2017, 365, 148-154. [CrossRef] open in new tab
  331. Rioja-Monllor, L. In Situ Exsolution Synthesis of Composite Cathodes for Protonic Ceramic Fuel Cells. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. open in new tab
  332. Lee, K.T.; Manthiram, A. Comparison of Ln 0.6 Sr 0.4 CoO 3−δ (Ln = La, Pr, Nd, Sm, and Gd) as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 2006, 153, A794-A798. [CrossRef] open in new tab
  333. Taguchi, H.; Komatsu, T.; Chiba, R.; Nozawa, K.; Orui, H.; Arai, H. Characterization of LaNi x Co y Fe 1−x−y O 3 as a cathode material for solid oxide fuel cells. Solid State Ion. 2011, 182, 127-132. [CrossRef] open in new tab
  334. Tietz, F.; Arul Raj, I.; Zahid, M.; Stöver, D. Electrical conductivity and thermal expansion of La 0.8 Sr 0.2 (Mn,Fe,Co)O 3−δ perovskites. Solid State Ion. 2006, 177, 1753-1756. [CrossRef] open in new tab
  335. Petric, A.; Huang, P.; Tietz, F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ion. 2000, 135, 719-725. [CrossRef] open in new tab
  336. Tai, L.W.; Nasrallah, M.M.; Anderson, H.U.; Sparlin, D.M.; Sehlin, S.R. Structure and electrical properties of La 1−x Sr x Co 1−y Fe y O 3 . Part 1. The system La 0.8 Sr 0.2 Co 1−y Fe y O 3 . Solid State Ion. 1995, 76, 259-271. [CrossRef] open in new tab
  337. Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review. J. Power Sources 2015, 298, 46-67. [CrossRef] open in new tab
  338. Rath, M.K.; Lee, K.T. Investigation of aliovalent transition metal doped La 0.7 Ca 0.3 Cr 0.8 X 0.2 O 3−δ (X = Ti, Mn, Fe, Co, and Ni) as electrode materials for symmetric solid oxide fuel cells. Ceram. Int. 2015, 41, 10878-10890. [CrossRef] open in new tab
  339. Wei, B.; Lü, Z.; Jia, D.; Huang, X.; Zhang, Y.; Su, W. Thermal expansion and electrochemical properties of Ni-doped GdBaCo 2 O 5+δ double-perovskite type oxides. Int. J. Hydrog. Energy 2010, 35, 3775-3782. [CrossRef] open in new tab
  340. Kharton, V.; Naumovich, E.; Kovalevsky, A.; Viskup, A.; Figueiredo, F.; Bashmakov, I.; Marques, F.M. Mixed electronic and ionic conductivity of LaCo(M)O 3 (M = Ga, Cr, Fe or Ni): IV. Effect of preparation method on oxygen transport in LaCoO 3−δ . Solid State Ion. 2000, 138, 135-148. [CrossRef] open in new tab
  341. Radaelli, P.G.; Cheong, S.W. Structural phenomena associated with the spin-state transition in LaCoO 3 . Phys. Rev. B 2002, 66, 094408. [CrossRef] open in new tab
  342. Zobel, C.; Kriener, M.; Bruns, D.; Baier, J.; Grüninger, M.; Lorenz, T.; Reutler, P.; Revcolevschi, A. Evidence for a low-spin to intermediate-spin state transition in (formula presented). Phys. Rev. B Condens. Matter Mater. Phys. 2002, 66, 1-4. [CrossRef] open in new tab
  343. Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion. 2000, 138, 79-90. [CrossRef] open in new tab
  344. Thommy, L.; Joubert, O.; Hamon, J.; Caldes, M.T. Impregnation versus exsolution: Using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 • C. Int. J. Hydrog. Energy 2016, 41, 14207-14216. [CrossRef] open in new tab
  345. Jiang, Z.; Xia, C.; Chen, F. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim. Acta 2010, 55, 3595-3605. [CrossRef] open in new tab
  346. Li, G.; He, B.; Ling, Y.; Xu, J.; Zhao, L. Highly active YSB infiltrated LSCF cathode for proton conducting solid oxide fuel cells. Int. J. Hydrog. Energy 2015, 40, 13576-13582. [CrossRef] open in new tab
  347. Tucker, M.C. Progress in metal-supported solid oxide fuel cells: A review. J. Power Sources 2010, 195, 4570-4582. [CrossRef] open in new tab
  348. Kim, J.-H.; Manthiram, A. LnBaCo 2 O 5+δ Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 2008, 155, B385-B390. [CrossRef] open in new tab
  349. Riza, F.; Ftikos, C.; Tietz, F.; Fischer, W. Preparation and characterization of Ln 0.8 Sr 0.2 Fe 0.8 Co 0.2 O 3−δ (Ln = La, Pr, Nd, Sm, Eu, Gd). J. Eur. Ceram. Soc. 2001, 21, 1769-1773. [CrossRef] open in new tab
  350. Klyndyuk, A.I. Thermal and chemical expansion of LnBaCuFeO 5+δ (Ln = La, Pr, Gd) ferrocuprates and LaBa 0.75 Sr 0.25 CuFeO 5+δ solid solution. Russ. J. Inorg. Chem. 2007, 52, 1343-1349. [CrossRef] open in new tab
  351. Klyndyuk, A.I.; Chizhova, E.A. Properties of perovskite-like phases LnBaCuFeO 5+δ (Ln = La, Pr). Glass Phys. Chem. 2008, 34, 313-318. [CrossRef] open in new tab
  352. Jin, F.; Xu, H.; Long, W.; Shen, Y.; He, T. Characterization and evaluation of double perovskites LnBaCoFeO 5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. J. Power Sources 2013, 243, 10-18. [CrossRef] open in new tab
  353. Che, X.; Shen, Y.; Li, H.; He, T. Assessment of LnBaCo 1.6 Ni 0.4 O 5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. J. Power Sources 2013, 222, 288-293. [CrossRef] open in new tab
  354. Mori, M.; Hiei, Y.; Sammes, N.M.; Tompsett, G.A. Thermal-Expansion Behaviors and Mechanisms for Ca-or Sr-Doped Lanthanum Manganite Perovskites under Oxidizing Atmospheres. J. Electrochem. Soc. 2000, 147, 1295-1302. [CrossRef] open in new tab
  355. Shao, Z.; Yang, W.; Cong, Y.; Dong, H.; Tong, J.; Xiong, G. Investigation of the permeation behavior and stability of a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ oxygen membrane. J. Membr. Sci. 2000, 172, 177-188. [CrossRef] open in new tab
  356. Shao, Z.; Dong, H.; Xiong, G.; Cong, Y.; Yang, W. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J. Membr. Sci. 2001, 183, 181-192. [CrossRef] open in new tab
  357. Shao, Z.; Haile, S.M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170-173. [CrossRef] [PubMed] open in new tab
  358. Lin, Y.; Ran, R.; Zheng, Y.; Shao, Z.; Jin, W.; Xu, N.; Ahn, J. Evaluation of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J. Power Sources 2008, 180, 15-22. [CrossRef] open in new tab
  359. Patra, H.; Rout, S.K.; Pratihar, S.K.; Bhattacharya, S. Thermal, electrical and electrochemical characteristics of Ba 1−x Sr x Co 0.8 Fe 0.2 O 3−δ cathode material for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2011, 36, 11904-11913. [CrossRef] open in new tab
  360. Wei, B.; Lü, Z.; Huang, X.; Miao, J.; Sha, X.; Xin, X.; Su, W. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides Ba x Sr 1−x Co 0.8 Fe 0.2 O 3−δ (0.3 ≤ x ≤ 0.7). J. Eur. Ceram. Soc. 2006, 26, 2827-2832. [CrossRef] open in new tab
  361. McIntosh, S.; Vente, J.F.; Haije, W.G.; Blank, D.H.A.; Bouwmeester, H.J.M. Oxygen Stoichiometry and Chemical Expansion of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ Measured by in Situ Neutron Diffraction. Chem. Mater. 2006, 18, 2187-2193. [CrossRef] open in new tab
  362. Kriegel, R.; Kircheisen, R.; Töpfer, J. Oxygen stoichiometry and expansion behavior of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ . Solid State Ion. 2010, 181, 64-70. [CrossRef] open in new tab
  363. Zhu, Q.; Jin, T.; Wang, Y. Thermal expansion behavior and chemical compatibility of Ba x Sr 1−x Co 1−y Fe y O 3−δ with 8YSZ and 20GDC. Solid State Ion. 2006, 177, 1199-1204. [CrossRef] open in new tab
  364. Wang, H.; Tablet, C.; Feldhoff, A.; Caro, J. Investigation of phase structure, sintering, and permeability of perovskite-type Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3−δ membranes. J. Membr. Sci. 2005, 262, 20-26. [CrossRef] open in new tab
  365. Hwang, H.J.; Moon, J.W.; Lee, S.; Lee, E.A. Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. J. Power Sources 2005, 145, 243-248. [CrossRef] open in new tab
  366. Richter, J.; Holtappels, P.; Graule, T.; Nakamura, T.; Gauckler, L.J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie 2009, 140, 985-999. [CrossRef] open in new tab
  367. Tai, L.W.; Nasrallah, M.M.; Anderson, H.U.; Sparlin, D.M.; Sehlin, S.R. Structure and electrical properties of La 1−x Sr x Co 1−y Fe y O 3 . Part 2. The system La 1−x Sr x Co 0.2 Fe 0.8 O 3 . Solid State Ion. 1995, 76, 273-283. [CrossRef] open in new tab
  368. Xu, Q.; Huang, D.; Zhang, F.; Chen, W.; Chen, M.; Liu, H. Structure, electrical conducting and thermal expansion properties of La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3−δ -Ce 0.8 Sm 0.2 O 2−δ composite cathodes. J. Alloys Compd. 2008, 454, 460-465. [CrossRef] open in new tab
  369. Fan, B.; Yan, J.; Yan, X. The ionic conductivity, thermal expansion behavior, and chemical compatibility of La 0.54 Sr 0.44 Co 0.2 Fe 0.8 O 3−δ as SOFC cathode material. Solid State Sci. 2011, 13, 1835-1839. [CrossRef] open in new tab
  370. Kim, S.; Kim, S.H.; Lee, K.S.; Yu, J.H.; Seong, Y.H.; Han, I.S. Mechanical properties of LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ )-GDC (Ce 0.9 Gd 0.1 O 2−δ ) for oxygen transport membranes. Ceram. Int. 2017, 43, 1916-1921. [CrossRef] open in new tab
  371. Kostogloudis, G.C.; Ftikos, C. Properties of A-site-deficient La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ -based perovskite oxides. Solid State Ion. 1999, 126, 143-151. [CrossRef] open in new tab
  372. Kharton, V.V.; Yaremchenko, A.A.; Patrakeev, M.V.; Naumovich, E.N.; Marques, F.M.B. Thermal and chemical induced expansion of La 0.3 Sr 0.7 (Fe,Ga)O 3−δ ceramics. J. Eur. Ceram. Soc. 2003, 23, 1417-1426. [CrossRef] open in new tab
  373. Wang, S.; Katsuki, M.; Dokiya, M.; Hashimoto, T. High temperature properties of La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3−δ phase structure and electrical conductivity. Solid State Ion. 2003, 159, 71-78. [CrossRef] open in new tab
  374. Duan, C.; Hook, D.; Chen, Y.; Tong, J.; O'Hayre, R. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 • C. Energy Environ. Sci. 2017, 10, 176-182. [CrossRef] open in new tab
  375. Wang, F.; Yan, D.; Zhang, W.; Chi, B.; Pu, J.; Jian, L. LaCo 0material for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2013, 38, 646-651. [CrossRef] open in new tab
  376. Kharton, V.; Viskup, A.P.; Bochkoc, D.M.; Naumovich, E.N.; Reut, O.P. Mixed electronic and ionic conductivity of LaCo(M)O 3 (M = Ga, Cr, Fe or Ni) III. Diffusion of oxygen through LaCo 1−x−y Fe x Ni y O 3 ceramics. Solid State Ion. 1998, 110, 61-68. [CrossRef] open in new tab
  377. Chiba, R.; Yoshimura, F.; Sakurai, Y. An investigation of LaNi 1−x Fe x O 3 as a cathode material for solid oxide fuel cells. Solid State Ion. 1999, 124, 281-288. [CrossRef] open in new tab
  378. Grande, T.; Tolchard, J.R.; Selbach, S.M. Anisotropic Thermal and Chemical Expansion in Sr-Substituted LaMnO 3+δ : Implications for Chemical Strain Relaxation. Chem. Mater. 2012, 24, 338-345. [CrossRef] open in new tab
  379. Huang, Y.; Dass, R.; Xing, Z.; Goodenough, J. Double perovskites as anode materials for solid-oxide fuel cells. Science 2006, 312, 254-257. [CrossRef] [PubMed] open in new tab
  380. Wei, T.; Zhang, Q.; Huang, Y.H.; Goodenough, J.B. Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxidefuel cells. J. Mater. Chem. 2012, 22, 225-231. [CrossRef] open in new tab
  381. Cherepanov, V.A.; Aksenova, T.V.; Gavrilova, L.Y.; Mikhaleva, K.N. Structure, nonstoichiometry and thermal expansion of the NdBa(Co,Fe) 2 O 5+δ layered perovskite. Solid State Ion. 2011, 188, 53-57. [CrossRef] open in new tab
  382. West, M.; Manthiram, A. Layered LnBa 1−x Sr x CoCuO 5+δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2013, 38, 3364-3372. [CrossRef] open in new tab
  383. Kim, J.H.; Irvine, J.T.S. Characterization of layered perovskite oxides NdBa 1−x Sr x Co 2 O 5+δ (x = 0 and 0.5) as cathode materials for IT-SOFC. Int. J. Hydrog. Energy 2012, 37, 5920-5929. [CrossRef] open in new tab
  384. Li, X.; Jiang, X.; Xu, H.; Xu, Q.; Jiang, L.; Shi, Y.; Zhang, Q. Scandium-doped PrBaCo 2−x Sc x O 6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2013, 38, 12035-12042. [CrossRef] open in new tab
  385. Kim, J.; Choi, S.; Park, S.; Kim, C.; Shin, J.; Kim, G. Effect of Mn on the electrochemical properties of a layered perovskite NdBa 0.5 Sr 0.5 Co 2−x Mn x O 5+δ (x = 0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2013, 112, 712-718. [CrossRef] open in new tab
  386. Wang, Y.; Zhao, X.; Lü, S.; Meng, X.; Zhang, Y.; Yu, B.; Li, X.; Sui, Y.; Yang, J.; Fu, C.; et al. Synthesis and characterization of SmSrCo 2−x Mn x O 5+δ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceram. Int. 2014, 40, 11343-11350. [CrossRef] open in new tab
  387. Phillipps, M.B.; Sammes, N.M.; Yamamoto, O. Gd 1−x A x Co 1−y Mn y O 3 (A = Sr, Ca) as a cathode for the SOFC. Solid State Ion. 1999, 123, 131-138. [CrossRef] open in new tab
  388. Liu, L.; Guo, R.; Wang, S.; Yang, Y.; Yin, D. Synthesis and characterization of PrBa 0.5 Sr 0.5 Co 2−x Ni x O 5+δ (x = 0.1, 0.2 and 0.3) cathodes for intermediate temperature SOFCs. Ceram. Int. 2014, 40, 16393-16398. [CrossRef] open in new tab
  389. Jo, S.H.; Muralidharan, P.; Kim, D.K. Enhancement of electrochemical performance and thermal compatibility of GdBaCo 2/3 Fe 2/3 Cu 2/3 O 5+δ cathode on Ce 1.9 Gd 0.1 O 1.95 electrolyte for IT-SOFCs. Electrochem. Commun. 2009, 11, 2085-2088. [CrossRef] open in new tab
  390. Zhang, Y.; Yu, B.; Lü, S.; Meng, X.; Zhao, X.; Ji, Y.; Wang, Y.; Fu, C.; Liu, X.; Li, X.; et al. Effect of Cu doping on YBaCo 2 O 5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2014, 134, 107-115. [CrossRef] open in new tab
  391. Jin, F.; Shen, Y.; Wang, R.; He, T. Double-perovskite PrBaCo 2material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 2013, 234, 244-251. [CrossRef] open in new tab
  392. Jiang, L.; Wei, T.; Zeng, R.; Zhang, W.X.; Huang, Y.H. Thermal and electrochemical properties of PrBa 0.5 Sr 0.5 Co 2−x Fe x O 5+δ (x = 0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. J. Power Sources 2013, 232, 279-285. [CrossRef] open in new tab
  393. Zhao, L.; Shen, J.; He, B.; Chen, F.; Xia, C. Synthesis, characterization and evaluation of PrBaCo 2−x Fe x O 5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2011, 36, 3658-3665. [CrossRef] open in new tab
  394. Ni, D.W.; Charlas, B.; Kwok, K.; Molla, T.T.; Hendriksen, P.V.; Frandsen, H.L. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports. J. Power Sources 2016, 311, 1-12. [CrossRef] open in new tab
  395. Kim, Y.N.; Kim, J.H.; Manthiram, A. Effect of Fe substitution on the structure and properties of LnBaCo 2−x Fe x O 5+δ (Ln = Nd and Gd) cathodes. J. Power Sources 2010, 195, 6411-6419. [CrossRef] open in new tab
  396. Volkova, N.E.; Gavrilova, L.Y.; Cherepanov, V.A.; Aksenova, T.V.; Kolotygin, V.A.; Kharton, V.V. Synthesis, crystal structure and properties of SmBaCo 2−x Fe x O 5+δ . J. Solid State Chem. 2013, 204, 219-223. [CrossRef] open in new tab
  397. Xue, J.; Shen, Y.; He, T. Double-perovskites YBaCo 2−x Fe x O 5+δ cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 2011, 196, 3729-3735. [CrossRef] open in new tab
  398. Zhou, Q.; Wei, W.C.J.; Guo, Y.; Jia, D. LaSrMnCoO 5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 2012, 19, 36-38. [CrossRef] open in new tab
  399. Aksenova, T.V.; Gavrilova, L.Y.; Yaremchenko, A.A.; Cherepanov, V.A.; Kharton, V.V. Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo 2 O 5+δ and SmBaCo 2 O 5+δ . Mater. Res. Bull. 2010, 45, 1288-1292. [CrossRef] open in new tab
  400. Zhao, H.; Zheng, Y.; Yang, C.; Shen, Y.; Du, Z.;Świerczek, K. Electrochemical performance of Pr 1−x Y x BaCo 2 O 5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2013, 38, 16365-16372. [CrossRef] open in new tab
  401. Zhao, L.; Nian, Q.; He, B.; Lin, B.; Ding, H.; Wang, S.; Peng, R.; Meng, G.; Liu, X. Novel layered perovskite oxide PrBaCuCoO 5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells. J. Power Sources 2010, 195, 453-456. [CrossRef] open in new tab
  402. Mogni, L.; Prado, F.; Jiménez, C.; Caneiro, A. Oxygen order-disorder phase transition in layered GdBaCo 2 O 5+δ perovskite: Thermodynamic and transport properties. Solid State Ion. 2013, 240, 19-28. [CrossRef] open in new tab
  403. Kuroda, C.; Zheng, K.;Świerczek, K. Characterization of novel GdBa 0.5 Sr 0.5 Co 2−x Fe x O 5+δ perovskites for application in IT-SOFC cells. Int. J. Hydrog. Energy 2013, 38, 1027-1038. [CrossRef] open in new tab
  404. Tarancón, A.; Burriel, M.; Santiso, J.; Skinner, S.J.; Kilner, J.A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010, 20, 3799-3813. [CrossRef] open in new tab
  405. Hu, Y.; Bouffanais, Y.; Almar, L.; Morata, A.; Tarancon, A.; Dezanneau, G. La 2−x Sr x CoO 4−δ (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. Int. J. Hydrog. Energy 2013, 38, 3064-3072. [CrossRef] open in new tab
  406. Prado, F.; Mogni, L.; Cuello, G.J.; Caneiro, A. Neutron powder diffraction study at high temperature of the Ruddlesden-Popper phase Sr 3 Fe 2 O 6+δ . Solid State Ion. 2007, 178, 77-82. [CrossRef] open in new tab
  407. Flura, A.; Dru, S.; Nicollet, C.; Vibhu, V.; Fourcade, S.; Lebraud, E.; Rougier, A.; Bassat, J.M.; Grenier, J.C. Chemical and structural changes in Ln 2 NiO 4+δ (Ln = La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J. Solid State Chem. 2015, 228, 189-198. [CrossRef] open in new tab
  408. Amow, G.; Skinner, S.J. Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. J. Solid State Electrochem. 2006, 10, 538-546. [CrossRef] open in new tab
  409. Amow, G.; Davidson, I.J.; Skinner, S.J. A comparative study of the Ruddlesden-Popper series, La n+1 Ni n O 3n+1 (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ion. 2006, 177, 1205-1210. [CrossRef] open in new tab
  410. Skinner, S.J.; Kilner, J.A. Oxygen diffusion and surface exchange in La 2−x Sr x NiO 4+δ . Solid State Ion. 2000, 135, 709-712. [CrossRef] open in new tab
  411. Boehm, E.; Bassat, J.M.; Steil, M.C.; Dordor, P.; Mauvy, F.; Grenier, J.C. Oxygen transport properties of La 2 Ni 1−x Cu x O 4+δ mixed conducting oxides. Solid State Sci. 2003, 5, 973-981. [CrossRef] open in new tab
  412. Vibhu, V.; Rougier, A.; Nicollet, C.; Flura, A.; Grenier, J.C.; Bassat, J.M. La 2−x Pr x NiO 4+δ as suitable cathodes for metal supported SOFCs. Solid State Ion. 2015, 278, 32-37. [CrossRef] open in new tab
  413. Kharton, V.V.; Kovalevsky, A.V.; Avdeev, M.; Tsipis, E.V.; Patrakeev, M.V.; Yaremchenko, A.A.; Naumovich, E.N.; Frade, J.R. Chemically induced expansion of La 2 NiO 4+δ -based materials. Chem. Mater. 2007, 19, 2027-2033. [CrossRef] open in new tab
  414. Boehm, E.; Bassat, J.M.; Dordor, P.; Mauvy, F.; Grenier, J.C.; Stevens, P. Oxygen diffusion and transport properties in non-stoichiometric Ln 2−x NiO 4+δ oxides. Solid State Ion. 2005, 176, 2717-2725. [CrossRef] open in new tab
  415. Lee, S.; Lee, K.; Jang, Y.H.; Bae, J. Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique. Int. J. Hydrog. Energy 2017, 42, 1648-1660. [CrossRef] open in new tab
  416. Dailly, J.; Ancelin, M.; Marrony, M. Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity. Solid State Ion. 2017, 306, 69-75. [CrossRef] open in new tab
  417. Mahata, T.; Nair, S.R.; Lenka, R.K.; Sinha, P.K. Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route. Int. J. Hydrog. Energy 2012, 37, 3874-3882. [CrossRef] open in new tab
  418. Ramousse, S.; Menon, M.; Brodersen, K.; Knudsen, J.; Rahbek, U.; Larsen, P.H. Manufacturing of anode-supported SOFC's: Processing parameters and their influence. ECS Trans. 2007, 7, 317-327. [CrossRef] open in new tab
  419. Majumdar, S.; Claar, T.; Flandermeyer, B. Stress and Fracture Behavior of Monolithic Fuel Cell Tapes. J. Am. Ceram. Soc. 1986, 69, 628-633. [CrossRef] open in new tab
  420. Prakash, B.S.; Kumar, S.S.; Aruna, S.T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renew. Sustain. Energy Rev. 2014, 36, 149-179. [CrossRef] open in new tab
  421. Nasani, N.; Wang, Z.J.; Willinger, M.G.; Yaremchenko, A.A.; Fagg, D.P. In-situ redox cycling behaviour of NieBaZr 0.85 Y 0.15 O 3−δ cermet anodes for Protonic Ceramic Fuel Cells. Int. J. Hydrog. Energy 2014, 39, 19780-19788. [CrossRef] open in new tab
  422. Onishi, T.; Han, D.; Noda, Y.; Hatada, N.; Majima, M.; Uda, T. Evaluation of performance and durability of Ni-BZY cermet electrodes with BZY electrolyte. Solid State Ion. 2018, 317, 127-135. [CrossRef] open in new tab
  423. Sažinas, R.; Einarsrud, M.A.; Grande, T. Toughening of Y-doped BaZrO 3 proton conducting electrolytes by hydration. J. Mater. Chem. A 2017, 5, 5846-5857. [CrossRef] open in new tab
  424. Zhang, Y.; Xia, C. A durability model for solid oxide fuel cell electrodes in thermal cycle processes. J. Power Sources 2010, 195, 6611-6618. [CrossRef] open in new tab
  425. Lee, K.T.; Vito, N.J.; Wachsman, E.D. Comprehensive quantification of Ni-Gd 0.1 Ce 0.9 O 1.95 anode functional layer microstructures by three-dimensional reconstruction using a FIB/SEM dual beam system. J. Power Sources 2013, 228, 220-228. [CrossRef] open in new tab
  426. Atkinson, A.; Barnett, S.; Gorte, R.J.; Irvine, J.T.S.; McEvoy, A.J.; Mogensen, M.; Singhal, S.C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17-27. [CrossRef] [PubMed] open in new tab
  427. Zhu, W.Z.; Deevi, S.C. A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 2003, 362, 228-239. [CrossRef] open in new tab
  428. Lee, S.; Park, I.; Lee, H.; Shin, D. Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells. Int. J. Hydrog. Energy 2014, 39, 14342-14348. [CrossRef] open in new tab
  429. Anandakumar, G.; Li, N.; Verma, A.; Singh, P.; Kim, J.H. Thermal stress and probability of failure analyses of functionally graded solid oxide fuel cells. J. Power Sources 2010, 195, 6659-6670. [CrossRef] open in new tab
  430. Dippon, M.; Babiniec, S.M.; Ding, H.; Ricote, S.; Sullivan, N.P. Exploring electronic conduction through BaCe x Zr 0.9−x Y 0.1 O 3-d proton-conducting ceramics. Solid State Ion. 2016, 286. [CrossRef] open in new tab
  431. Biswas, S.; Nithyanantham, T.; Nambiappan Thangavel, S.; Bandopadhyay, S. High-temperature mechanical properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures in ambient air and reducing environments. Ceram. Int. 2013, 39, 3103-3111. [CrossRef] open in new tab
  432. Patki, N.S.; Manerbino, A.; Way, J.D.; Ricote, S. Galvanic hydrogen pumping performance of copper electrodes fabricated by electroless plating on a BaZr 0.9−x Ce x Y 0.1 O 3−δ proton-conducting ceramic membrane. Solid State Ion. 2018, 317, 256-262. [CrossRef] open in new tab
  433. Stange, M.; Stefan, E.; Denonville, C.; Larring, Y.; Rørvik, P.M.; Haugsrud, R. Development of novel metal-supported proton ceramic electrolyser cell with thin film BZY15-Ni electrode and BZY15 electrolyte. Int. J. Hydrog. Energy 2017, 42, 13454-13462. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 171 times

Recommended for you

Meta Tags