Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat - Publication - Bridge of Knowledge

Search

Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat

Abstract

This paper presents the methodology of techno-economic analysis for a nuclear unit operating in partial cogeneration mode and its application for the case study: a nuclear power plant planned in Poland. The research objectives were: to propose EPR, AP1000 and ESBWR nuclear condensing-extraction turbine systems modifications required for operation in cogeneration, to determine optimal heat production and heat transport line (HTL) parameters, to evaluate the technological feasibility of proposed solutions, to analyze profitability and competitiveness of the system versus coal-fired technologies. To adapt nuclear turbine to operation in partial cogeneration mode, the steam must be extracted from low-pressure (LP) section of the turbine and crossover pipe connecting high-pressure (HP) or intermediate-pressure (IP) section with LP section. Thermodynamic analysis proved that the operation of nuclear power plant at peak thermal load up to 250 MW neither requires to change primary cycle arrangements of considered nuclear units nor thermal capacities of nuclear reactors. Total annual costs of nuclear power plant operating in partial cogeneration were the lowest of all considered heat and power options, with all types of reactors, for the emission allowance price of 27 EUR/t CO2-eq. The specific cost of heat from nuclear cogeneration option was 10.3 -12.7 EUR/GJ

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Cite as

Full text

download paper
downloaded 640 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ENERGY no. 141, pages 2470 - 2483,
ISSN: 0360-5442
Language:
English
Publication year:
2017
Bibliographic description:
Jaskólski M., Reński A., Minkiewicz T.: Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat// ENERGY. -Vol. 141, (2017), s.2470-2483
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.energy.2017.04.144
Bibliography: test
  1. plant and a power plant (option b) have proven to be the least-cost heat and power option for other reactor types i.e. AP1000 and EPR. Investment expenditures for the adaptation of a nuclear unit to operation in partial cogeneration mode and heat transport from NCP to DHA would constitute 2.0-2.5% of total investment in a nuclear cogeneration plant. The annual costs of heat production and heat transport were 2.3-3.3% of total annual costs of NCP option. The cost of heat from NCP was in the range of 37-45 EUR/MWh (10.3-12.7 EUR/GJ) -the lowest for EPR, the highest for ESBWR -and was higher than for FCP, which equaled to 22 EUR/MWh (6.1 EUR/GJ). open in new tab
  2. European Commission. Commission Staff Working Paper. Impact Assessment. Energy Roadmap 2050. COM(2011) 885 final {SEC(2011) 1566 final; SEC(2011) 1569 final}. 2011. open in new tab
  3. International Energy Agency. IEA -Investment Costs. World Energy Outlook 2014. http://www.worldenergyoutlook.org/weomodel/investmentcosts/ (accessed April 4, 2016). open in new tab
  4. Majumdar D. Desalination and Other Non-electric Applications of Nuclear Energy. Work. Nucl. React. Data Nucl. React. Physics, Des. Saf., Trieste: 2002.
  5. Mitenkov, F.M.; Kusmartsev EV. Nuclear Heat Applications in Russia (IAEA-TECDOC-1056). Vienna, Austria: 1998.
  6. Axpo. Nuclear Power Plant Beznau Reliable , environmentally compatible electricity production n.d. http://www.axpo.com/content/dam/axpo/switzerland/erleben/dokumente/axpo_KKB_prospekt_ en.pdf.res/axpo_KKB_prospekt_en.pdf. open in new tab
  7. Axpo Nuclear Energy. Environmental Product Declaration Beznau Nuclear Power Plant | Update 2011 2011. http://gryphon.environdec.com/data/files/6/7562/epd144en_v2.pdf.
  8. Tuomisto H. Nuclear Design Practices and the Case of Loviisa 3. Third Nucl. Power Sch., Gdańsk: 2010.
  9. Bergroth N. Loviisa 3 -unique possibility for large scale CHP generation and CO2 reductions. FORS Semin., Otaniemi: 2009.
  10. Nuclear Energy Agency. 4.5. On the role and economics of nuclear cogeneration in a low carbon energy future NEA/NDC(2012)22. 2012. open in new tab
  11. Noh JM, Paillère H, Sozoniuk V. On the Role and Economics of Nuclear Cogeneration in a Low Carbon Energy Future. IAEA Tech. Meet. Econ. Anal. High Temp. Gas Cool. React. Small Mediu. Sized React., Vienna: 2015.
  12. Safa H. Heat recovery from nuclear power plants. Int J Electr Power Energy Syst 2012;42:553- 9. doi:10.1016/j.ijepes.2012.04.052. open in new tab
  13. Le Pierrès N, Luo L, Berthiaud J, Mazet N. Heat transportation from the Bugey power plant. Int J Energy Res 2009;33:135-43. doi:10.1002/er.1429. open in new tab
  14. Jasserand F, Devezeaux de Lavergne J-G. Initial economic appraisal of nuclear district heating in France. EPJ Nucl Sci Technol 2016;2:39. doi:10.1051/epjn/2016028. open in new tab
  15. Kuznetsov YN, Khrilev LS, Brailov VP. The technical and economic principles and lines of development of nuclear district heating cogeneration. Therm Eng 2008;55:926-38. doi:10.1134/S0040601508110049. open in new tab
  16. Smirnov I a., Svetlov KS, Khrilev LS. Selecting main technical solutions for heat supply systems equipped with nuclear cogeneration stations. Therm Eng 2008;55:939-46. doi:10.1134/S0040601508110050. open in new tab
  17. Kuznetsov YN, Khrilev LS, Brailov VP, Livshits IM, Smirnov IA, Svetlov KS. An analysis of technical and economic indicators characterizing the development of nuclear cogeneration stations in the Northwestern region. Therm Eng 2008;55:913-25. doi:10.1134/S0040601508110037. open in new tab
  18. Reński A, Duzinkiewicz K, Minkiewicz T, Kaczmarek-Kacprzak A. Nuclear Co-generation : The Analysis of Technical Capabilities and Cost Estimates. Acta Energ 2016;28:121-32. doi:10.12736/issn.2300-3022.2016311. open in new tab
  19. Reński A, Jaskólski M, Minkiewicz T. Technical and economic conditions of supplying residential consumers with heat from nuclear power plant. Polish J Environ Stud 2015;24:55-9.
  20. Jaskólski M, Reński A, Duzinkiewicz K, Kaczmarek-Kacprzak A. Profitability criteria of partial cogeneration in nuclear power plant. Rynek Energii 2014;114:141-7.
  21. Minkiewicz T, Reński A. The Possibility to Use a Nuclear Power Plant as a Source of Electrical Energy and Heat. Acta Energ 2014;3:114-8. doi:10.12736/issn.2300-3022.2014310. open in new tab
  22. Hirsch P, Grochowski M, Duzinkiewicz K. Pipeline system for heat transportation from nuclear power plant -An optimizing approach. 2015 20th Int Conf Methods Model Autom Robot MMAR 2015 2015:1044-9. doi:10.1109/MMAR.2015.7284023. open in new tab
  23. Hirsch P, Duzinkiewicz K, Grochowski M, Piotrowski R. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems. Appl Energy 2016;182:164-76. doi:10.1016/j.apenergy.2016.08.107. open in new tab
  24. The European Parliament and the Council. Commission Decision 2008/952/EC, of 19 November 2008, establishing detailed guidelines for the implementation and application of Annex II to Directive 2004/8/EC. C(2008) 7294. 2008. open in new tab
  25. The Weather Company LLC. Historical Weather. Weather Undergr 2014. https://www.wunderground.com/history/index.html (accessed March 3, 2014). open in new tab
  26. Westinghouse Electric Company LLC. AP1000 European Design Control Document -Chapter 10: Steam and Power Conversion - Figure 10.1-1 2013. open in new tab
  27. United States Nuclear Regulatory Commission (US NRC). GE-Hitachi ESBWR Design Control Document Tier 2, Rev. 10 2014. http://pbadupws.nrc.gov/docs/ML1401/ML14010A414.html (accessed March 11, 2015). open in new tab
  28. United States Nuclear Regulatory Commission (US NRC). AREVA Design Control Document Rev. 5 -Tier 2 Chapter 10 -Steam and Power Conversion System. US EPR Final Saf Anal Rep 2013. http://pbadupws.nrc.gov/docs/ML1326/ML13261A551.html. open in new tab
  29. Reński A. Nuclear power and heat-and-power (NCHP) plants as a heat source for heating systems (in Polish). Energetyka 2009;8:515-20.
  30. Minkiewicz T, Reński A. Nuclear power plant as a source of electrical energy and heat. Arch Energ 2011;3-4:155-66. open in new tab
  31. Tuomisto H. Nuclear District Heating Plans from Loviisa to Helsinki Metropolitan Area. Tech. Econ. Assess. Non-Electric Appl. Nucl. Energy, Paris: OECD NEA; 2013, p. 4-5. open in new tab
  32. United States Nuclear Regulatory Commission (US NRC). Westinghouse AP1000 Design Control Document Rev. 19 2011. https://www.nrc.gov/docs/ml1117/ml11171a500.html (accessed March 7, 2017). open in new tab
  33. Bartnik R, Buryn Z. Conversion of Coal-Fired Power Plants to Cogeneration and Combined- Cycle. London: Springer London; 2011. doi:10.1007/978-0-85729-856-0. open in new tab
  34. Holmgren M. X Steam, Thermodynamic properties of water and steam. Mathworks 2007. https://www.mathworks.com/matlabcentral/fileexchange/9817-x-steam--thermodynamic- properties-of-water-and-steam (accessed March 7, 2017).
  35. Minkiewicz T, Reński A. The concept of the method for selecting the optimal parameters of heat received from the nuclear power unit operating in partial cogeneration mode. (Accepted for publication). Acta Energ 2017. open in new tab
  36. Krivit SB, Lehr JH, Kingery TB. Nuclear Energy Encyclopedia: Science, technology, and Application (Wiley Series on Energy). Hoboken, NJ: A John Wil & Sons, Inc., Publication; 2011. open in new tab
  37. The Energy Market Agency. Constructed and planned power and CHP plants in Poland (in Polish). Cent Inf O Rynk Energii 2016:1-25. http://www.rynek-energii- elektrycznej.cire.pl/st,33,335,tr,145,0,0,0,0,0,budowane-i-planowane-elektrownie.html (accessed March 3, 2016). open in new tab
  38. Jaskólski M. The analysis of factors having an impact on economic viabilty of nuclear power plant (In Polish: Analiza czynników wpływających na ekonomiczną efektywność elektrowni jądrowej). Rynek Energii 2012;103:15-22.
  39. DECC. Updated short-term traded carbon values used for UK public policy appraisal. London: 2015. open in new tab
  40. Ministry of Economy of the Republic of Poland. Conclusions from the forecasting analyses for the needs of Energy Policy of Poland until 2050 -the draft version 0.2 (in Polish) 2015. open in new tab
  41. Polskie Sieci Elektroenergetyczne S.A. Taryfa dla energii elektrycznej na rok 2014 (in Polish). Biul Branżowy URE - Energ Elekryczna 2013;229.
  42. International Energy Agency and Nuclear Energy Agency. Projected Costs of Generating Electricity 2010. Paris: OECD Publishing; 2010. doi:10.1787/9789264084315-en. open in new tab
  43. Reński A. Optimization of development of large cities district heating systems (in Polish: Optymalizacja rozwoju scentralizowanych systemów zasilania w ciepło aglomeracji miejskich). Gdańsk: Gdańsk University of Technology Publishing Office; 2002.
  44. Kannan, R., Strachan, N., Pye, S., Anandarajah, G., Balta-Ozkan N. UK MARKAL Model Documentation. Univ Coll London 2007. https://www.ucl.ac.uk/energy-models/models/uk- markal/uk-markal-documentation (accessed October 12, 2015). open in new tab
  45. Jaskólski M, Bućko P. MARKAL long-term power generation scenarios for Poland -Concept of the model. Rynek Energii 2013;107:108-14. open in new tab
  46. Strupczewski A. Market available nuclear reactors -comparison of their technical, ecological and economic advantages and disadvantages (In Polish: Porównanie dostępnych na rynku reaktorów jądrowych: zalety i wady techniczne, ekologiczne i ekonomiczne). Energetyka 2009:499-506.
  47. IAEA. Status report 81 -Advanced Passive PWR (AP 1000). 2011. open in new tab
  48. The Energy Market Agency. Polish power sector statisitcs 2009. Warsaw: The Energy Market Agency; 2010. open in new tab
  49. Duczkowska-Kądziel A. The analysis of cogeneration 370 MW Power Block with the super structured gas turbine (In Polish: Analiza skojarzonej pracy bloku 370 MW nadbudowanego turbiną gazową). Opole University of Technology, 2011.
  50. Mann Jr. JG. Process Integration: Unifying Concepts , Industrial Applications and Software Implementation. Virginia Polytechnic Institute and State University, 1999.
  51. Parsons Brinkerhoff. Heating Supply Options for New Development -An Assessment Method for Designers and Developers -Revision C June 29th 2009. London / Livingston: 2009.
  52. Kamler W. District heating (In Polish: Ciepłownictwo). Warszawa: Państwowe Wydawnictwo Naukowe; 1976.
  53. Szkarowski A, Łatkowski L. District Heating (In Polish: Ciepłownictwo). first. Warsaw: Wydawnictwo Naukowo-Techniczne; 2006. open in new tab
  54. Smyk A, Pietrzyk Z. Heat losses of the district heating network during different operational conditions (In Polish: Straty przenikania ciepła w sieci ciepłowniczej w różnych warunkach eksploatacyjnych). Rynek Energii 2012;103:46-51.
  55. Wagner J. Metoda podziału kosztów własnych elektrociepłowni między oddawaną z niej energią elektryczną i cieplną (1962 edition). 1st ed. Łódź: 1962. open in new tab
  56. Jaskólski M. Modelling long-term technological transition of Polish power system using MARKAL: Emission trade impact. Energy Policy 2016;97:365-77. doi:10.1016/j.enpol.2016.07.017. open in new tab
Verified by:
Gdańsk University of Technology

seen 309 times

Recommended for you

Meta Tags