Three-dimensional geographically weighted inverse regression (3GWR) model for satellite derived bathymetry using Sentinel-2 observations - Publication - Bridge of Knowledge

Search

Three-dimensional geographically weighted inverse regression (3GWR) model for satellite derived bathymetry using Sentinel-2 observations

Abstract

Current trends of development of satellite derived bathymetry (SDB) models rely on applying calibration techniques including analytical approaches, neuro-fuzzy systems, regression optimization and others. In most of the cases, the SDB models are calibrated and verified for test sites, that provide favourable conditions for the remote derivation of bathymetry such as high water clarity, homogenous bottom type, low amount of sediment in the water and other factors. In this paper, a novel 3-dimensional geographical weighted regression (3GWR) SDB technique is presented, it binds together methods already presented in other studies, the geographically weighted local regression (GWR) model, with depth dependent inverse optimization. The proposed SDB model was calibrated and verified on a relatively difficult test site of the South Baltic near-shore areas with the use of multispectral observations acquired by a recently launched Sentinel-2 satellite observation system. By conducted experiments, it was shown that the proposed SDB model is capable of obtaining satisfactory results of RMSE ranging from 0.88 to 1.23[m] depending on the observation and can derive bathymetry for depths up to 12m. It was also shown, that the proposed approach may be used operationally, for instance, in the continuous assessment of temporal bathymetry changes, for areas important in the context of ensuring local maritime safety.

Citations

  • 1 6

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 176 times
Publication version
Accepted or Published Version
License
Copyright (2018 Taylor & Francis Group, LLC)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MARINE GEODESY no. 41, pages 1 - 23,
ISSN: 0149-0419
Language:
English
Publication year:
2018
Bibliographic description:
Chybicki A.: Three-dimensional geographically weighted inverse regression (3GWR) model for satellite derived bathymetry using Sentinel-2 observations// MARINE GEODESY. -Vol. 41, nr. 1 (2018), s.1-23
DOI:
Digital Object Identifier (open in new tab) 10.1080/01490419.2017.1373173
Verified by:
Gdańsk University of Technology

seen 231 times

Recommended for you

Meta Tags