Abstract
We consider the complexity of semi-equitable k-coloring, k>3, of the vertices of a cubic or subcubic graph G. In particular, we show that, given a n-vertex subcubic graph G, it is NP-complete to obtain a semi-equitable k-coloring of G whose non-equitable color class is of size s if s>n/3, and it is polynomially solvable if s, n/3.
Citations
-
0
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 12 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.dam.2017.12.002
- License
- Copyright (2017 Elsevier B.V)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DISCRETE APPLIED MATHEMATICS
no. 237,
pages 116 - 122,
ISSN: 0166-218X - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Furmańczyk H., Kubale M.: Tight bounds on the complexity of semi-equitable coloring of cubic and subcubic graphs// DISCRETE APPLIED MATHEMATICS. -Vol. 237, (2018), s.116-122
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.dam.2017.12.002
- Verified by:
- Gdańsk University of Technology
seen 131 times