Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions - Publication - Bridge of Knowledge

Search

Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions

Abstract

A ring resonator involves a scattering process where a part of the output is fed again into the input. The same formal structure is encountered in the problem of time travel in a neighborhood of a closed timelike curve (CTC). We know how to describe quantum optics of ring resonators, and the resulting description agrees with experiment. We can apply the same formal strategy to any looped quantum evolution, in particular to the time travel. The argument is in its essence a topological one and thus does not refer to any concrete geometry. It is shown that the resulting paradigm automatically removes logical inconsistencies associated with chronology protection, provided all input-output relations are given by unitary maps. Examples of elementary loops and a two-loop time machine illustrate the construction. In order to apply the formalism to quantum computation one has to describe multi-qubit systems interacting via CTC-based quantum gates. This is achieved by second quantization of loops. An example of a multiparticle system, with oscillators interacting via a time machine, is explicitly calculated. However, the resulting treatment of CTCs is not equivalent to the one proposed by Deutsch in his classic paper [1].

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

download paper
downloaded 41 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICS LETTERS A no. 383, pages 2704 - 2712,
ISSN: 0375-9601
Language:
English
Publication year:
2019
Bibliographic description:
Czachor M.: Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions// PHYSICS LETTERS A -Vol. 383,iss. 23 (2019), s.2704-2712
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.physleta.2019.05.043
Bibliography: test
  1. D. Deutsch, Phys. Rev. D 44, 3197 (1991). open in new tab
  2. M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988). open in new tab
  3. W. J. Van Stockum, Proc. Roy. Soc. Edin. 57, 135 (1937). open in new tab
  4. K. Gödel, Rev. Mod. Phys. 21, 447 (1949). open in new tab
  5. A. H. Taub, Ann. Math. 53, 472 (1951). open in new tab
  6. E. T. Newman, L. Tamburino, and T. J. Unti, J. Math. Phys. 4, 915 (1963). open in new tab
  7. C. W. Misner, in Relativity Theory and Astrophysics I. Relativity and Cosmology, ed. J. Ehlers, pp. 160-169, Providence (1967).
  8. J. R. Gott III, Phys. Rev. Lett. 66, 1126 (1991). open in new tab
  9. S. Deser, R. Jackiw, and G. 't Hooft, Phys. Rev. Lett. 68, 267 (1992). open in new tab
  10. J. D. E. Grant, Phys. Rev. D 47, 2388 (1993). open in new tab
  11. M. Ringbauer et al., Nat. Comm. 5, 4145 (2014) . open in new tab
  12. C. H. Bennett et al., Phys. Rev. Lett. 103, 170502 (2009).
  13. D. G. Boulware, Phys. Rev. D. 46, 4421 (1992). open in new tab
  14. H. D. Politzer, Phys. Rev. D. 46, 4410 (1992); open in new tab
  15. Phys. Rev. D. 49, 3981 (1994). open in new tab
  16. D. S. Goldwirth et al., Phys. Rev. D. 49, 3951 (1994). open in new tab
  17. D. G. Rabus, Integrated Ring Resonators. The Com- pendium, Springer, Berlin (2007). open in new tab
  18. L. Caspani et al., Light: Science & Applications 6, e17100 (2017); doi: 10.1038/lsa.2017.100 open in new tab
  19. K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, Phys. Rev. Lett. 113, 120501 (2014). open in new tab
  20. P. P. Rohde, Phys. Rev. A 91, 012306 (2015). open in new tab
  21. A. Schreiber et al., Science 336, 55 (2012). open in new tab
  22. Y. He et al., Phys. Rev. Lett. 118, 190501 (2017).
  23. S. Takeda and A. Furusawa, Phys. Rev. Lett. 119, 120504 (2017). open in new tab
  24. In an earlier version of the present paper, M. Czachor, arXiv:1805.12129v4 [quant-ph], proofs employing a sum- mation of cycles of looped evolutions were used. As ex- pected, the results were identical to our Theorems 1 and 2. The present proofs are more straightforward, and do not require additional 'physical' assumptions about the physical process itself. It is nevertheless very instructive to prove the theorems in both ways. open in new tab
  25. T. Pegg, in Times' arrows, quantum measurement and superluminal behavior , eds. D. Mugnai, A. Ranfagni and L. S. Schulman, p. 113, CNDR, Roma (2001);
  26. D. M. Greenberger and K. Svozil, in Between Chance and Choice, eds. H. Atmanspacher and R. Bishop, p. 293, Imprint Academic, Thorverton (2002); arXiv:quant- ph/0506027 (2005).
  27. S. W. Hawking, Phys. Rev. D 52, 5681 (1995). open in new tab
  28. E. Radu, Phys. Lett. A 247, 207 (1998). open in new tab
  29. W. G. Unruh, Phys. Rev. Lett. 46 1351 (1981). open in new tab
  30. L.J. Garay, J.R. Anglin, J.I. Cirac and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). open in new tab
  31. M. Cadoni and S. Mignemi, Phys. Rev. D 72, 084012, (2005). open in new tab
  32. V.A. De Lorenci, R. Klippert, R. and Y.N. Obukhov, Phys. Rev. D 68, 061502 (2003). open in new tab
  33. M. Visser, Class. Quantum Grav. 15, 1767 (1998). open in new tab
  34. C. Barceló, S. Liberati, S. Sonego and M. Visser, New J. Phys. 6, 186 (2004 ). open in new tab
  35. F. Baldovin, M. Novello, S.E. Perez Bergliaffa, and J.M. Salim, Class. Quantum Grav. 17, 3265 (2000). open in new tab
  36. C. Barceló and A. Campos, Phys. Lett. B 563, 217 (2003). open in new tab
  37. C. Barceló, S. Liberati and M. Visser, Int. J. Mod. Phys. D 12, 1641 (2003). open in new tab
  38. S. Finazzi, S. Liberati and L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012) open in new tab
  39. X.-H. Ge and Y.-G. Shen, Phys. Lett. B 623, 141 (2005). open in new tab
  40. X.-H. Ge and S.-W. Kim, Phys. Lett. B 652, 349 (2007). open in new tab
  41. G. Krein, G. Menezes and N.F. Svaiter, Phys. Rev. Lett. 105, 131301 (2010). open in new tab
  42. R. Schützhold and W.G. Unruh, Phys. Rev. Lett. 95, 031301 (2005). open in new tab
  43. R. Howl, R. Penrose, and I. Fuentes, New J. Phys. 21, 043047 (2019). open in new tab
  44. G. E. Volovik, The Universe in a Helium Droplet, Claren- don Press, Oxford (2003). open in new tab
  45. C. Sabín, Phys. Rev. D 94, 081501 (2016). open in new tab
  46. C. Sabín, Universe 4, 115 (2018).
  47. R. Bekenstein et al., Nature Phot. 11, 664 (2017). open in new tab
  48. C. Sabín, New J. Phys. 20, 053028 (2018). open in new tab
  49. G. Martín-Vázquez and C. Sabín, arXiv:1810.05124 [quant-ph] (2018). open in new tab
  50. C. Barceló, S. Liberati and M. Visser, Living Rev. Rel. 812 (2005); the updated preprint arXiv:gr-qc/0505065 (version from 2011) includes 702 references. open in new tab
  51. S. W. Hawking, Phys. Rev. D 46, 603 (1992). open in new tab
  52. M. Visser, Phys. Rev. D 47, 554 (1993). open in new tab
  53. M. Paw lowski and M. Czachor, Phys. Rev. A 73, 042111 (2006).
  54. M. Wilczewski and M. Czachor, Phys. Rev. A 80, 013802 (2009). open in new tab
  55. A. C. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993). open in new tab
  56. M. Czachor, Phys. Lett. A 257, 107 (1999); arXiv:quant- ph/9812030. open in new tab
  57. M. Czachor, arXiv:1805.12129v1 [quant-ph]
Verified by:
Gdańsk University of Technology

seen 100 times

Recommended for you

Meta Tags