Abstract
The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. A wheel W_n is a graph on n vertices obtained from a C_{n−1} by adding one vertex w and making w adjacent to all vertices of the C_{n−1}. We obtain two exact values for small wheels: ex(n,W_5)=\lfloor n^2/4+n/2\rfloor, ex(n,W_7)=\lfloor n^2/4+n/2+1 \rfloor. Given that ex(n,W_6) is already known, this paper completes the spectrum for all wheels up to 7 vertices. In addition, we present the construction which gives us the lower bound ex(n,W_{2k+1})>\lfloor n^2/4 \rfloor + \lfloor n/2 \rfloor in general case.
Citations
-
1 2
CrossRef
-
0
Web of Science
-
1 2
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.disc.2017.10.003
- License
- Copyright (2017 Elsevier B.V)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DISCRETE MATHEMATICS
no. 341,
edition 4,
pages 1150 - 1154,
ISSN: 0012-365X - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Dzido T., Jastrzębski A.: Turán numbers for odd wheels// DISCRETE MATHEMATICS. -Vol. 341, iss. 4 (2018), s.1150-1154
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.disc.2017.10.003
- Verified by:
- Gdańsk University of Technology
seen 295 times