Abstract
This study demonstrates that few-layer two-dimensional (2D) CrCl3 transition-metal trihalides (TMTHs; MX3, where M = Ti, V, Cr, Mo, Fe, Ru, and X = Cl, Br, or I) exhibit promising capabilities as chemoresistive sensors for humidity and NO2, H2, and NH3 gases, representing suitable 2D interfaces for gas-sensing applications. Liquid-phase-exfoliated 2D-CrCl3 flakes spin-coated over interdigital substrates exhibit higher chemical stability than CrI3 and VI3 with an excellent reproducible and long-term stable electrical response at an operating temperature (OT) of 100 °C in dry/wet air environments. Results show that with an increase/decrease in resistance, 2D-CrCl3 exhibits p-type responses to NO2 (400 ppb to 1 ppm) and H2O (10−80% relative humidity (RH) at 25 °C), H2 (10−250 ppm), and NH3 (10−250 ppm) oxidizing/reducing gases, respectively. The humidity cross-response of 2D-CrCl3 to NO2 reveals that an environment with 40% RH improves the relative responses and limits of detection of exfoliated CrCl3. The humidity- and gas-sensing response mechanism of 2D-CrCl3 sensor explains its reversal in resistance from an ionic (OT = 25 °C) to an electronic conduction regime (OT = 100 °C) under humid air conditions. These findings provide insights and possibilities for using 2D-CrCl3 TMTHs as humidity- and gas-sensing interfaces.
Citations
-
3
CrossRef
-
0
Web of Science
-
2
Scopus
Authors (7)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
ACS Applied Nano Materials
no. 7,
pages 3679 - 3690,
ISSN: 2574-0970 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Paolucci V., Mastrippolito D., Ricci V., Świątek H., Klimczuk T., Ottaviano L., Cantalini C.: Two-Dimensional CrCl3-Layered Trihalide Nanoflake Sensor for the Detection of Humidity, NO2, and H2// ACS Applied Nano Materials -Vol. 7,iss. 4 (2024), s.3679-3690
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acsanm.3c05051
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 0 times
Recommended for you
Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing
- K. Drozdowska,
- T. Welearegay,
- L. Österlund
- + 1 authors