Abstract
Surrogate modeling has become the method of choice in solving an increasing number of antenna design tasks, especially those involving expensive full-wave electromagnetic (EM) simulations. Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges of the system parameters is limited. Performance-driven (or constrained) modeling frameworks may be employed to mitigate these issues by considering a construction of surrogates from the standpoint of the antenna performance figures rather than directly geometry parameters. This permits a significant reduction of the model setup cost without restricting its design utility. This paper proposes a novel modeling framework, which capitalizes on the domain confinement concepts, and also incorporates variable-fidelity EM simulations, both at the surrogate domain definition stage, and when rendering the final surrogate. The latter employs co-kriging as a method of blending simulation data of different fidelities. The presented approach has been validated using three microstrip antennas, and demonstrated to yield reliable models at remarkably low CPU costs, as compared to both conventional and performance-driven modeling procedures.
Citations
-
8
CrossRef
-
0
Web of Science
-
1 3
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-022-20495-y
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Scientific Reports
no. 12,
ISSN: 2045-2322 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Pietrenko-Dąbrowska A., Kozieł S., Gołuński Ł.: Two-Stage Variable-Fidelity Modeling of Antennas with Domain Confinement// Scientific Reports -Vol. 12,iss. 1 (2022), s.17275-
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-022-20495-y
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 112 times