Urban Vegetation in Air Quality Management: A Review and Policy Framework - Publication - Bridge of Knowledge

Search

Urban Vegetation in Air Quality Management: A Review and Policy Framework

Abstract

Recent episodes of high air pollution concentration levels in many Polish cities indicate the urgent need for policy change and for the integration of various aspects of urban development into a common platform for local air quality management. In this article, the focus was placed on the prospects of improving urban air quality through proper design and protection of vegetation systems within local spatial planning strategies. Recent studies regarding the mitigation of air pollution by urban greenery due to deposition and aerodynamic effects were reviewed, with special attention given to the design guidelines resulting from these studies and their applicability in the process of urban planning. The conclusions drawn from the review were used to conduct three case studies: in Gdańsk, Warsaw, and Poznan, Poland. The existing local urban planning regulations for the management of urban greenery were critically evaluated in relation to the findings of the review. The results indicate that the current knowledge regarding the improvement of urban air quality by vegetation is not applied in the process of urban planning to a sufficient degree. Some recommendations for alternative provisions were discussed.

Citations

  • 4 5

    CrossRef

  • 0

    Web of Science

  • 3 9

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Sustainability no. 12, pages 1 - 28,
ISSN:
Language:
English
Publication year:
2020
Bibliographic description:
Badach J., Dymnicka M., Baranowski A.: Urban Vegetation in Air Quality Management: A Review and Policy Framework// Sustainability -Vol. 12,iss. 3 (2020), s.1-28
DOI:
Digital Object Identifier (open in new tab) 10.3390/su12031258
Bibliography: test
  1. World Bank Group World Bank Open Data. Available online: https://data.worldbank.org/indicator/SP.URB. TOTL.IN.ZS (accessed on 15 May 2018). open in new tab
  2. Eurostat. Urban Europe: Statistics on Cities, Towns and Suburbs, 2016 ed.; Publications office of the European Union: Luxembourg, 2016. open in new tab
  3. Xu, L.Y.; Xie, X.D.; Li, S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ. Pollut. 2013, 178, 102-114. [CrossRef] 4. WHO Ambient (Outdoor) Air Quality and Health. Available online: http://www.who.int/news-room/fact- sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 15 May 2018). open in new tab
  4. Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590-1596. [CrossRef] open in new tab
  5. Brand, P.; Thomas, M.J. Urban Environmentalism; Routledge: New York, NY, USA, 2005.
  6. Zhang, Y.; Gu, Z. Air quality by urban design. Nat. Geosci. 2013, 6, 506. [CrossRef] open in new tab
  7. Yuan, C.; Ng, E.; Norford, L.K. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build. Environ. 2014, 71, 245-258. [CrossRef] open in new tab
  8. Santiago, J.-L.; Buccolieri, R.; Rivas, E.; Sanchez, B.; Martilli, A.; Gatto, E.; Martín, F. On the Impact of Trees on Ventilation in a Real Street in Pamplona, Spain. Atmosphere 2019, 10, 697. [CrossRef] open in new tab
  9. Guidolotti, G.; Salviato, M.; Calfapietra, C. Comparing estimates of EMEP MSC-W and UFORE models in air pollutant reduction by urban trees. Environ. Sci. Pollut. Res. 2016, 23, 19541-19550. [CrossRef] open in new tab
  10. Kwak, M.J.; Lee, J.; Kim, H.; Park, S.; Lim, Y.; Kim, J.E.; Baek, S.G.; Seo, S.M.; Kim, K.N.; Woo, S.Y. The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. Forests 2019, 10, 960. [CrossRef] open in new tab
  11. Liu, J.; Cao, Z.; Zou, S.; Liu, H.; Hai, X.; Wang, S.; Duan, J.; Xi, B.; Yan, G.; Zhang, S.; et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci. Total Environ. 2018, 616-617, 417-426. [CrossRef] open in new tab
  12. Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci. Rep. 2017, 7, 3206. [CrossRef] open in new tab
  13. Abhijith, K.V.; Kumar, P. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos. Environ. 2019, 132-147. [CrossRef] Sustainability 2020, 12, 1258 22 of 28 open in new tab
  14. Dadvand, P.; Rivas, I.; Basagaña, X.; Alvarez-Pedrerol, M.; Su, J.; De Castro Pascual, M.; Amato, F.; Jerret, M.; Querol, X.; Sunyer, J.; et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 2015, 523, 59-63. [CrossRef] open in new tab
  15. Silli, V.; Salvatori, E.; Manes, F. Removal of airborne particulate matter by vegetation in an urban park in the city of Rome (Italy): An ecosystem services perspective. Ann. di Bot. 2015, 5, 53-62.
  16. Tong, Z.; Whitlow, T.H.; Landers, A.; Flanner, B. A case study of air quality above an urban roof top vegetable farm. Environ. Pollut. 2016, 208, 256-260. [CrossRef] [PubMed] open in new tab
  17. Van Ryswyk, K.; Prince, N.; Ahmed, M.; Brisson, E.; Miller, J.D.; Villeneuve, P.J. Does urban vegetation reduce temperature and air pollution concentrations? Findings from an environmental monitoring study of the Central Experimental Farm in Ottawa, Canada. Atmos. Environ. 2019, 218, 116886. [CrossRef] open in new tab
  18. Viippola, V.; Whitlow, T.H.; Zhao, W.; Yli-Pelkonen, V.; Mikola, J.; Pouyat, R.; Setälä, H. The effects of trees on air pollutant levels in peri-urban near-road environments. Urban For. Urban Green. 2018, 30, 62-71. [CrossRef] open in new tab
  19. Yli-Pelkonen, V.; Scott, A.A.; Viippola, V.; Setälä, H. Trees in urban parks and forests reduce O3, but not NO2 concentrations in Baltimore, MD, USA. Atmos. Environ. 2017, 167, 73-80. [CrossRef] open in new tab
  20. Yli-Pelkonen, V.; Setälä, H.; Viippola, V. Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landsc. Urban Plan. 2017, 158, 39-47. [CrossRef] open in new tab
  21. Yli-Pelkonen, V.; Viippola, V.; Rantalainen, A.-L.; Zheng, J.; Setälä, H. The impact of urban trees on concentrations of PAHs and other gaseous air pollutants in Yanji, northeast China. Atmos. Environ. 2018, 192, 151-159. [CrossRef] open in new tab
  22. Fuller, C.; Carter, D.; Hayat, M.; Baldauf, R.; Watts Hull, R. Phenology of a Vegetation Barrier and Resulting Impacts on Near-Highway Particle Number and Black Carbon Concentrations on a School Campus. Int. J. Environ. Res. Public Health 2017, 14, 160. [CrossRef] open in new tab
  23. Gómez-Moreno, F.J.; Artíñano, B.; Ramiro, E.D.; Barreiro, M.; Núñez, L.; Coz, E.; Dimitroulopoulou, C.; Vardoulakis, S.; Yagüe, C.; Maqueda, G.; et al. Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot. Environ. Pollut. 2019, 247, 195-205. [CrossRef] open in new tab
  24. Irga, P.J.; Burchett, M.D.; Torpy, F.R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 2015, 120, 173-181. [CrossRef] open in new tab
  25. Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure-A case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599-600, 1728-1739. [CrossRef] [PubMed] open in new tab
  26. Lee, E.S.; Ranasinghe, D.R.; Ahangar, F.E.; Amini, S.; Mara, S.; Choi, W.; Paulson, S.; Zhu, Y. Field evaluation of vegetation and noise barriers for mitigation of near-freeway air pollution under variable wind conditions. Atmos. Environ. 2018, 175, 92-99. [CrossRef] open in new tab
  27. Lin, M.-Y.; Hagler, G.; Baldauf, R.; Isakov, V.; Lin, H.-Y.; Khlystov, A. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations. Sci. Total Environ. 2016, 553, 372-379. [CrossRef] open in new tab
  28. Luo, H.; Wang, N.; Chen, J.; Ye, X.; Sun, Y.F. Study on the thermal effects and air quality improvement of green roof. Sustainability 2015, 7, 2804-2817. [CrossRef] open in new tab
  29. Nguyen, T.; Yu, X.; Zhang, Z.; Liu, M.; Liu, X. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 2015, 27, 33-41. [CrossRef] open in new tab
  30. Lu, S.; Yang, X.; Li, S.; Chen, B.; Jiang, Y.; Wang, D.; Xu, L. Effects of plant leaf surface and different pollution levels on PM2.5 adsorption capacity. Urban For. Urban Green. 2018, 34, 64-70. [CrossRef] open in new tab
  31. Mori, J.; Hanslin, H.M.; Burchi, G.; Saebø, A. Particulate matter and element accumulation on coniferous trees at different distances from a highway. Urban For. Urban Green. 2015, 14, 170-177. [CrossRef] open in new tab
  32. Mori, J.; Saebø, A.; Hanslin, H.M.; Teani, A.; Ferrini, F.; Fini, A.; Burchi, G. Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban For. Urban Green. 2015, 14, 264-273. [CrossRef] open in new tab
  33. Ozdemir, H. Mitigation impact of roadside trees on fine particle pollution. Sci. Total Environ. 2019, 659, 1176-1185. [CrossRef] open in new tab
  34. Viecco, M.; Vera, S.; Jorquera, H.; Bustamante, W.; Gironás, J.; Dobbs, C.; Leiva, E. Potential of particle matter dry deposition on green roofs and living walls vegetation for mitigating urban atmospheric pollution in semiarid climates. Sustainability 2018, 10, 2431. [CrossRef] open in new tab
  35. He, C.; Qiu, K.; Alahmad, A.; Pott, R. Particulate matter capturing capacity of roadside evergreen vegetation during the winter season. Urban For. Urban Green. 2020, 48, 126510. [CrossRef] open in new tab
  36. Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249-253. [CrossRef] open in new tab
  37. Liang, D.; Ma, C.; Wang, Y.Q.; Wang, Y.J.; Chen-xi, Z. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176-21186. [CrossRef] [PubMed] open in new tab
  38. Lin, L.; Yan, J.; Ma, K.; Zhou, W.; Chen, G.; Tang, R.; Zhang, Y. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach. Atmos. Environ. 2017, 171, 59-69. [CrossRef] open in new tab
  39. Luo, J.; Niu, Y.; Zhang, Y.; Zhang, M.; Tian, Y.; Zhou, X. Dynamic analysis of retention PM 2.5 by plant leaves in rainfall weather conditions of six tree species. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 1-12. open in new tab
  40. Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 2017, 100, 268-276. [CrossRef] open in new tab
  41. Rindy, J.E.; Ponette-González, A.G.; Barrett, T.E.; Sheesley, R.J.; Weathers, K.C. Urban Trees Are Sinks for Soot: Elemental Carbon Accumulation by Two Widespread Oak Species. Environ. Sci. Technol. 2019, 53, 10092-10101. [CrossRef] open in new tab
  42. Sgrigna, G.; Saebø, A.; Gawronski, S.; Popek, R.; Calfapietra, C. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ. Pollut. 2015, 197, 187-194. [CrossRef] open in new tab
  43. Vieira, J.; Matos, P.; Mexia, T.; Silva, P.; Lopes, N.; Freitas, C.; Correia, O.; Santos-Reis, M.; Branquinho, C.; Pinho, P. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environ. Res. 2018, 160, 306-313. [CrossRef] open in new tab
  44. Wang, H.; Maher, B.A.; Ahmed, I.A.; Davison, B. Efficient Removal of Ultrafine Particles from Diesel Exhaust by Selected Tree Species: Implications for Roadside Planting for Improving the Quality of Urban Air. Environ. Sci. Technol. 2019, 53, 6906-6916. [CrossRef] [PubMed] open in new tab
  45. Xie, C.; Kan, L.; Guo, J.; Jin, S.; Li, Z.; Chen, D.; Li, X.; Che, S. A dynamic processes study of PM retention by trees under different wind conditions. Environ. Pollut. 2018, 233, 315-322. [CrossRef] [PubMed] open in new tab
  46. Xu, Y.; Shang, B.; Yuan, X.; Feng, Z.; Calatayud, V. Relationships of CO2 assimilation rates with exposure- and flux-based O3 metrics in three urban tree species. Sci. Total Environ. 2018, 613-614, 233-239. [CrossRef] [PubMed] open in new tab
  47. Xu, Y.; Xu, W.; Mo, L.; Heal, M.R.; Xu, X.; Yu, X. Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 12545-12556. [CrossRef] [PubMed] open in new tab
  48. Xu, H.; Wang, W.; Wang, H.; Sun, Y.; Zhong, Z.; Wang, S. Differences in quantity and composition of leaf particulate matter and morphological structures in three evergreen trees and their association in Harbin, China. Environ. Pollut. 2019, 252, 1772-1790. [CrossRef] [PubMed] open in new tab
  49. Zhang, W.; Wang, B.; Niu, X. Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing. Forests 2017, 8, 92. [CrossRef] open in new tab
  50. Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. [CrossRef] open in new tab
  51. Zhao, X.; Yan, H.; Liu, M.; Kang, L.; Yu, J.; Yang, R. Relationship between PM 2.5 adsorption and leaf surface morphology in ten urban tree species in Shenyang, China. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1029-1039. [CrossRef] open in new tab
  52. Alahabadi, A.; Ehrampoush, M.H.; Miri, M.; Ebrahimi Aval, H.; Yousefzadeh, S.; Ghaffari, H.R.; Ahmadi, E.; Talebi, P.; Abaszadeh Fathabadi, Z.; Babai, F.; et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 2017, 172, 459-467. [CrossRef] open in new tab
  53. Baraldi, R.; Neri, L.; Costa, F.; Facini, O.; Rapparini, F.; Carriero, G. Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation. Urban For. Urban Green. 2019, 37, 24-32. [CrossRef] open in new tab
  54. Blanusa, T.; Fantozzi, F.; Monaci, F.; Bargagli, R. Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban For. Urban Green. 2015, 14, 1095-1101. [CrossRef] open in new tab
  55. Chaudhary, I.J.; Rathore, D. Suspended particulate matter deposition and its impact on urban trees. Atmos. Pollut. Res. 2018, 9, 1072-1082. [CrossRef] open in new tab
  56. Chaudhary, I.J.; Rathore, D. Dust pollution: Its removal and effect on foliage physiology of urban trees. Sustain. Cities Soc. 2019, 51, 101696. [CrossRef] open in new tab
  57. Chen, B.; Lu, S.; Zhao, Y.; Li, S.; Yang, X.; Wang, B.; Zhang, H. Pollution Remediation by Urban Forests: PM2.5 Reduction in Beijing, China. Polish J. Environ. Stud. 2016, 25, 1873-1881. [CrossRef] open in new tab
  58. Greksa, A.; Ljevnaić-Mašić, B.; Grabić, J.; Benka, P.; Radonić, V.; Blagojević, B.; Sekulić, M. Potential of urban trees for mitigating heavy metal pollution in the city of Novi Sad, Serbia. Environ. Monit. Assess. 2019, 191, 636. [CrossRef] [PubMed] open in new tab
  59. Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; De Marco, A.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E.; et al. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban For. Urban Green. 2017, 27, 221-234. [CrossRef] open in new tab
  60. Douglas, A.N.J.; Irga, P.J.; Torpy, F.R. Determining broad scale associations between air pollutants and urban forestry: A novel multifaceted methodological approach. Environ. Pollut. 2019, 247, 474-481. [CrossRef] open in new tab
  61. Marando, F.; Salvatori, E.; Fusaro, L.; Manes, F. Removal of PM10 by forests as a nature-based solution for air quality improvement in the Metropolitan city of Rome. Forests 2016, 7, 150. [CrossRef] open in new tab
  62. Matos, P.; Vieira, J.; Rocha, B.; Branquinho, C.; Pinho, P. Modeling the provision of air-quality regulation ecosystem service provided by urban green spaces using lichens as ecological indicators. Sci. Total Environ. 2019, 665, 521-530. [CrossRef] open in new tab
  63. Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plan. 2016, 148, 99-107. [CrossRef] open in new tab
  64. Yang, J.; Chang, Y.; Yan, P. Ranking the suitability of common urban tree species for controlling PM 2.5 pollution. Atmos. Pollut. Res. 2015, 6, 267-277. [CrossRef] open in new tab
  65. Zhao, S.; Tang, Y.; Chen, A. Carbon Storage and Sequestration of Urban Street Trees in Beijing, China. Front. Ecol. Evol. 2016, 4. [CrossRef] open in new tab
  66. Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2017, 157, 457-467. [CrossRef] open in new tab
  67. Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34-47. [CrossRef] open in new tab
  68. Kiss, M.; Takács, Á.; Pogácsás, R.; Gulyás, Á. The role of ecosystem services in climate and air quality in urban areas: Evaluating carbon sequestration and air pollution removal by street and park trees in Szeged (Hungary). Morav. Geogr. Rep. 2015, 23, 36-46. [CrossRef] open in new tab
  69. Ning, Z.; Chambers, R.; Abdollahi, K. Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana, USA. iForest Biogeosciences For. 2016, 9, 860-867. [CrossRef] open in new tab
  70. Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192-201. [CrossRef] open in new tab
  71. Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Sci. Total Environ. 2019, 688, 673-683. [CrossRef] open in new tab
  72. Zhao, Y.; Hu, Q.; Li, H.; Wang, S.; Ai, M. Evaluating carbon sequestration and PM2.5 removal of urban street trees using mobile laser scanning data. Remote Sens. 2018, 10, 1759. [CrossRef] open in new tab
  73. Yang, J.; Liu, H.; Sun, J. Evaluation and Application of an Online Coupled Modeling System to Assess the Interaction between Urban Vegetation and Air Quality. Aerosol Air Qual. Res. 2018, 18, 693-710. [CrossRef] open in new tab
  74. Hofman, J.; Bartholomeus, H.; Janssen, S.; Calders, K.; Wuyts, K.; Van Wittenberghe, S.; Samson, R. Influence of tree crown characteristics on the local PM 10 distribution inside an urban street canyon in Antwerp (Belgium): A model and experimental approach. Urban For. Urban Green. 2016, 20, 265-276. [CrossRef] open in new tab
  75. Neft, I.; Scungio, M.; Culver, N.; Singh, S. Simulations of aerosol filtration by vegetation: Validation of existing models with available lab data and application to near-roadway scenario. Aerosol Sci. Technol. 2016, 50, 937-946. [CrossRef] open in new tab
  76. Giometto, M.G.; Christen, A.; Egli, P.E.; Schmid, M.F.; Tooke, R.T.; Coops, N.C.; Parlange, M.B. Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv. Water Resour. 2017, 106, 154-168. [CrossRef] open in new tab
  77. Sun, D.; Zhang, Y. Influence of avenue trees on traffic pollutant dispersion in asymmetric street canyons: Numerical modeling with empirical analysis. Transp. Res. Part D Transp. Environ. 2018, 65, 784-795. open in new tab
  78. Jeanjean, A.P.R.; Hinchliffe, G.; McMullan, W.A.; Monks, P.S.; Leigh, R.J. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale. Atmos. Environ. 2015, 120, 1-14. [CrossRef] open in new tab
  79. Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 227-241. [CrossRef] open in new tab
  80. Xing, Y.; Brimblecombe, P. Dispersion of traffic derived air pollutants into urban parks. Sci. Total Environ. 2018, 622-623, 576-583. [CrossRef] open in new tab
  81. Tong, Z.; Whitlow, T.H.; MacRae, P.F.; Landers, A.J.; Harada, Y. Quantifying the effect of vegetation on near-road air quality using brief campaigns. Environ. Pollut. 2015, 201, 141-149. [CrossRef] open in new tab
  82. Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 2016, 139, 75-86. [CrossRef] open in new tab
  83. Yuan, C.; Norford, L.; Ng, E. A semi-empirical model for the effect of trees on the urban wind environment. Landsc. Urban Plan. 2017, 168, 84-93. [CrossRef] open in new tab
  84. Abhijith, K.V.; Gokhale, S. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environ. Pollut. 2015, 204, 99-108. [CrossRef] open in new tab
  85. Ghasemian, M.; Amini, S.; Princevac, M. The influence of roadside solid and vegetation barriers on near-road air quality. Atmos. Environ. 2017, 170, 108-117. [CrossRef] open in new tab
  86. Gromke, C.; Blocken, B. Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: Quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. Environ. Pollut. 2015, 196, 214-223. [CrossRef] open in new tab
  87. Gromke, C.; Blocken, B. Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level. Environ. Pollut. 2015, 196, 176-184. [CrossRef] open in new tab
  88. Huang, Y.; Li, M.; Ren, S.; Wang, M.; Cui, P. Impacts of tree-planting pattern and trunk height on the airflow and pollutant dispersion inside a street canyon. Build. Environ. 2019, 165, 106385. [CrossRef] open in new tab
  89. Merlier, L.; Jacob, J.; Sagaut, P. Lattice-Boltzmann Large-Eddy Simulation of pollutant dispersion in street canyons including tree planting effects. Atmos. Environ. 2018, 195, 89-103. [CrossRef] open in new tab
  90. Su, J.; Wang, L.; Gu, Z.; Song, M.; Cao, Z. Effects of real trees and their structure on pollutant dispersion and flow field in an idealized street canyon. Atmos. Pollut. Res. 2019, 10, 1699-1710. [CrossRef] open in new tab
  91. Li, X.-B.B.; Lu, Q.-C.C.; Lu, S.-J.J.; He, H.-D.D.; Peng, Z.-R.R.; Gao, Y.; Wang, Z.-Y.Y. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 2016, 17, 80-91. [CrossRef] open in new tab
  92. Di Sabatino, S.; Buccolieri, R.; Pappaccogli, G.; Leo, L.S. The effects of trees on micrometeorology in a real street canyon: Consequences for local air quality. Int. J. Environ. Pollut. 2015, 58, 100. [CrossRef] open in new tab
  93. Moradpour, M.; Afshin, H.; Farhanieh, B. A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting. Atmos. Pollut. Res. 2017, 8, 253-266. [CrossRef] open in new tab
  94. Wang, C.; Li, Q.; Wang, Z.-H. Quantifying the impact of urban trees on passive pollutant dispersion using a coupled large-eddy simulation-Lagrangian stochastic model. Build. Environ. 2018, 145, 33-49. [CrossRef] open in new tab
  95. Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and air quality in city blocks using large-eddy simulation-urban planning perspective. Atmosphere 2018, 9, 65. [CrossRef] open in new tab
  96. Jeanjean, A.P.R.; Buccolieri, R.; Eddy, J.; Monks, P.S.; Leigh, R.J. Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban For. Urban Green. 2017, 22, 41-53. [CrossRef] open in new tab
  97. Santiago, J.-L.; Martilli, A.; Martin, F. On Dry Deposition Modelling of Atmospheric Pollutants on Vegetation at the Microscale: Application to the Impact of Street Vegetation on Air Quality. Bound. Layer Meteorol. 2017, 162, 451-474. [CrossRef] open in new tab
  98. Akopov, A.S.; Beklaryan, L.A.; Saghatelyan, A.K. Agent-based modelling of interactions between air pollutants and greenery using a case study of Yerevan, Armenia. Environ. Model. Softw. 2019, 116, 7-25. [CrossRef] open in new tab
  99. Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198-208. [CrossRef] open in new tab
  100. Xue, F.; Li, X. The impact of roadside trees on traffic released PM10 in urban street canyon: Aerodynamic and deposition effects. Sustain. Cities Soc. 2017, 30, 195-204. [CrossRef] open in new tab
  101. Zhang, M.; Deshmukh, P.; Baldauf, R.; Venkatram, A.; Isakov, V. Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality. Int. J. Environ. Pollut. 2017, 62, 127. [CrossRef] open in new tab
  102. Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1-10. [CrossRef] open in new tab
  103. Jeanjean, A.P.R.; Gallagher, J.; Monks, P.S.; Leigh, R.J. Ranking current and prospective NO 2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London. Environ. Pollut. 2017, 225, 587-597. [CrossRef] open in new tab
  104. Morakinyo, T.E.; Lam, Y.F. Study of traffic-related pollutant removal from street canyon with trees: Dispersion and deposition perspective. Environ. Sci. Pollut. Res. 2016, 23, 21652-21668. [CrossRef] [PubMed] open in new tab
  105. Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The impact of green space layouts on microclimate and air quality in residential districts of Nanjing, China. Forests 2018, 9, 224. [CrossRef] open in new tab
  106. Santiago, J.-L.; Rivas, E.; Sanchez, B.; Buccolieri, R.; Martin, F. The Impact of Planting Trees on NOx Concentrations: The Case of the Plaza de la Cruz Neighborhood in Pamplona (Spain). Atmosphere 2017, 8, 131. [CrossRef] open in new tab
  107. Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Max Zhang, K. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920-927. [CrossRef] [PubMed] open in new tab
  108. Vranckx, S.; Vos, P.; Maiheu, B.; Janssen, S. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium. Sci. Total Environ. 2015, 532, 474-483. [CrossRef] open in new tab
  109. Deng, S.; Ma, J.; Zhang, L.; Jia, Z.; Ma, L. Microclimate simulation and model optimization of the effect of roadway green space on atmospheric particulate matter. Environ. Pollut. 2019, 246, 932-944. [CrossRef] open in new tab
  110. Santiago, J.-L.; Buccolieri, R.; Rivas, E.; Calvete-Sogo, H.; Sanchez, B.; Martilli, A.; Alonso, R.; Elustondo, D.; Santamaría, J.M.; Martin, F. CFD modelling of vegetation barrier effects on the reduction of traffic-related pollutant concentration in an avenue of Pamplona, Spain. Sustain. Cities Soc. 2019, 48, 101559. [CrossRef] open in new tab
  111. Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73-83. [CrossRef] open in new tab
  112. Jin, X.; Yang, L.; Du, X.; Yang, Y. Transport characteristics of PM2.5 inside urban street canyons: The effects of trees and vehicles. Build. Simul. 2017, 10, 337-350. [CrossRef] open in new tab
  113. Hong, B.; Lin, B.; Qin, H. Numerical Investigation on the Effect of Avenue Trees on PM2.5 Dispersion in Urban Street Canyons. Atmosphere 2017, 8, 129. [CrossRef] open in new tab
  114. Qin, H.; Hong, B.; Jiang, R. Are green walls better options than green roofs for mitigating PM10 pollution? CFD simulations in urban street canyons. Sustainability 2018, 10, 2833. [CrossRef] open in new tab
  115. Rafael, S.; Vicente, B.; Rodrigues, V.; Miranda, A.I.; Borrego, C.; Lopes, M. Impacts of green infrastructures on aerodynamic flow and air quality in Porto's urban area. Atmos. Environ. 2018, 190, 317-330. [CrossRef] open in new tab
  116. Fallmann, J.; Forkel, R.; Emeis, S. Secondary effects of urban heat island mitigation measures on air quality. Atmos. Environ. 2016, 125, 199-211. [CrossRef] open in new tab
  117. Weber, M.; Driessen, P.P.J. Environmental Policy Integration: The Role of Policy Windows in the Integration of Noise and Spatial Planning. Environ. Plan. C Gov. Policy 2010, 28, 1120-1134. [CrossRef] open in new tab
  118. Ren, C.; Yang, R.; Cheng, C.; Xing, P.; Fang, X.; Zhang, S.; Wang, H.; Shi, Y.; Zhang, X.; Kwok, Y.T.; et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan -The implementation in Chinese cities. J. Wind Eng. Ind. Aerodyn. 2018, 182, 170-188. [CrossRef] open in new tab
  119. The Study on Conditions and Spatial Development Directions for Gdańsk; Gdańsk Development Office: Gdańsk, Poland, 2018. (In Polish) open in new tab
  120. Osińska-Skotak, K.; Zawalich, J. Analysis of land use changes of urban ventilation corridors in Warsaw in 1992-2015. Geogr. Pol. 2016, 89, 345-358. [CrossRef] open in new tab
  121. The Study on Conditions and Spatial Development Directions for Warsaw; Architecture and Spatial Planning Office of the Capital City of Warsaw: Warsaw, Poland, 2004. (In Polish) open in new tab
  122. The Study on Conditions and Spatial Development Directions for Poznań; Poznań Municipal Urban Planning Office: Poznań, Poland, 2018. (In Polish) open in new tab
  123. Badach, J.; Raszeja, E. Developing a framework for the implementation of landscape and greenspace indicators in sustainable urban planning. Waterfront landscape management: Case studies in Gdańsk, Poznań and Bristol. Sustainability 2019, 11, 2291. [CrossRef] open in new tab
  124. Kotus, J. Changes in the spatial structure of a large Polish city-The case of Poznań. Cities 2006, 23, 364-381. [CrossRef] open in new tab
  125. Łowicki, D. Land use changes in Poland during transformation. Case study of Wielkopolska region. Landsc. Urban Plan. 2008, 87, 279-288. [CrossRef] open in new tab
  126. Warsaw Architecture and Spatial Planning Office. The Capital City of Warsaw Public Information Bulletin [in Polish]. Available online: https://bip.warszawa.pl (accessed on 1 April 2019). open in new tab
  127. Szulczewska, B.; Giedych, R.; Borowski, J.; Kuchcik, M.; Sikorski, P.; Mazurkiewicz, A.; Stańczyk, T. How much green is needed for a vital neighbourhood? In search for empirical evidence. Land Use Policy 2014, 38, 330-345. [CrossRef] open in new tab
  128. Ng, E. Policies and technical guidelines for urban planning of high-density cities -air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478-1488. [CrossRef] open in new tab
  129. Huang, Y.; Yu, B.; Zhou, J.; Hu, C.; Tan, W.; Hu, Z.; Wu, J. Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution Remote Sensing images. Front. Earth Sci. 2013, 7, 43-54. [CrossRef] open in new tab
  130. Wei, S.; Fang, H.; Schaaf, C.B.; He, L.; Chen, J.M. Global 500 m clumping index product derived from MODIS BRDF data (2001-2017). Remote Sens. Environ. 2019, 232, 111296. [CrossRef] open in new tab
  131. Wei, S.; Fang, H. Estimation of canopy clumping index from MISR and MODIS sensors using the normalized difference hotspot and darkspot (NDHD) method: The influence of BRDF models and solar zenith angle. Remote Sens. Environ. 2016, 187, 476-491. [CrossRef] open in new tab
  132. Gromke, C. A vegetation modeling concept for building and environmental aerodynamics wind tunnel tests and its application in pollutant dispersion studies. Environ. Pollut. 2011, 159, 2094-2099. [CrossRef] open in new tab
  133. Runhaar, H.; Driessen, P.P.J.; Soer, L. Sustainable urban development and the challenge of policy integration: An assessment of planning tools for integrating spatial and environmental planning in the Netherlands. Environ. Plan. B Plan. Des. 2009, 36, 417-431. [CrossRef] open in new tab
  134. Jensen, S.S.; Berkowicz, R.; Sten Hansen, H.; Hertel, O. A Danish decision-support GIS tool for management of urban air quality and human exposures. Transp. Res. Part D Transp. Environ. 2001, 6, 229-241. [CrossRef] open in new tab
  135. Lim, L.L.; Hughes, S.J.; Hellawell, E.E. Integrated decision support system for urban air quality assessment. Environ. Model. Softw. 2005, 20, 947-954. [CrossRef] open in new tab
  136. Guariso, G.; Maione, M.; Volta, M. A decision framework for Integrated Assessment Modelling of air quality at regional and local scale. Environ. Sci. Policy 2016, 65, 3-12. [CrossRef] open in new tab
  137. Carnevale, C.; Douros, J.; Finzi, G.; Graff, A.; Guariso, G.; Nahorski, Z.; Pisoni, E.; Ponche, J.L.; Real, E.; Turrini, E.; et al. Uncertainty evaluation in air quality planning decisions: A case study for Northern Italy. Environ. Sci. Policy 2016, 65, 39-47. [CrossRef] open in new tab
  138. Ariza-Villaverde, A.B.; Jiménez-Hornero, F.J.; Gutiérrez De Ravé, E. Influence of urban morphology on total noise pollution: Multifractal description. Sci. Total Environ. 2014, 472, 1-8. [CrossRef] [PubMed] open in new tab
  139. Zielinska-Dabkowska, K.M.; Xavia, K. Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments. Sustainability 2019, 11, 3446. [CrossRef] open in new tab
  140. Zielinska-Dabkowska, K.M. Make lighting healthier. Nature 2018, 553, 274-276. [CrossRef] [PubMed] open in new tab
  141. Stone, B.; Hess, J.J.; Frumkin, H. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environ. Health Perspect. 2010, 118, 1425-1428. [CrossRef] [PubMed] open in new tab
  142. Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621-634. [CrossRef] open in new tab
  143. Stead, D. Urban planning, water management and climate change strategies: Adaptation, mitigation and resilience narratives in the Netherlands. Int. J. Sustain. Dev. World Ecol. 2014, 21, 15-27. [CrossRef] open in new tab
  144. Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569-570, 527-539. [CrossRef] open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 240 times

Recommended for you

Meta Tags