Using Principal Component Analysis and Canonical Discriminant Analysis for multibeam seafloor characterisation data - Publication - Bridge of Knowledge

Search

Using Principal Component Analysis and Canonical Discriminant Analysis for multibeam seafloor characterisation data

Abstract

The paper presents the seafloor characterisation based on multibeam sonar data. It relies on using the integrated model and description of three types of multibeam data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive sonar beams. The classification is performed by utilisation of several statistical methods applied for analysis of a set of seafloor descriptors derived from multibeam data. In the paper, the use of Principal Component Analysis (PCA), as well as Canonical Discriminant Analysis (CDA) for reduction of the seafloor parameter space dimension is presented along with the obtained results. In addition, the use of the open source World Wind Java SDK tool for implementation of imaging and mapping of seafloor multibeam data, integrated with other elements of a scene and overlaid on rich background data, is also shown.

Cite as

Full text

download paper
downloaded 45 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-SA open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
HYDROACOUSTICS no. 15, pages 123 - 130,
ISSN: 1642-1817
Language:
English
Publication year:
2012
Bibliographic description:
Łubniewski Z., Stepnowski A.: Using Principal Component Analysis and Canonical Discriminant Analysis for multibeam seafloor characterisation data// HYDROACOUSTICS. -Vol. 15., (2012), s.123-130
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 129 times

Recommended for you

Meta Tags