Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring - Publication - Bridge of Knowledge

Search

Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring

Abstract

We investigated the resistance of individual constituent casein epitopes (αS1-, αS2-, β- and κ-CN) in food-grademilk protein sodium caseinate (NaCN) to simulated human gastro-duodenal digestion. The influence of NaCNadsorption to the surface of oil-in-water emulsion droplets and the effect of crosslinking of the protein withenzyme transglutaminase (TG) on the proteolysis were studied by indirect ELISA. TG crosslinking renderedfragments of casein molecules significantly resistant to digestion. However, it depended on the type of casein andwhether NaCN was presented in solution or emulsion. The crosslinking was found to considerably hinder thedigestion of several amino acid regions in one of the major caseins of NaCN, β-CN. For αS1- and αS2-CN, onlylimited resistance to digestive enzymes was observed after NaCN had been crosslinked in solution but not (or to alimited extent) in emulsion. κ-CN proved to be the least resistant to the enzymatic hydrolysis regardless of the TGtreatment. Our work shows for the first time how the digestibility of individual components of important food-grade protein ingredients can differ in a complex, colloidal food system. It also shows an example of how thedigestibility can be modulated by chemical and physical structuring.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 0

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 35 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
FOOD HYDROCOLLOIDS no. 88, pages 114 - 118,
ISSN: 0268-005X
Language:
English
Publication year:
2019
Bibliographic description:
Franziska B., Didier D., Dulko D., Balazs B., Mackie A., Macierzanka A.: Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring// FOOD HYDROCOLLOIDS. -Vol. 88, (2019), s.114-118
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.foodhyd.2018.09.042
Bibliography: test
  1. Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Benamouzig, R., Tome, D., 257 open in new tab
  2. & Leonil, J. (2013). Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy 258 humans. American Journal of Clinical Nutrition, 97, 1314-1323.
  3. Buchert, J., Ercili Cura, D., Ma. H., Gasparetti, C., Monogioudi, E., Faccio, G., Mattinen, M., Boer, H., Partanen, 260 open in new tab
  4. R., Selinheimo, E., Lantto, R., & Kruus, K. (2010) Crosslinking food proteins for improved functionality. Annual 261 Review of Food Science and Technology, 1, 113-138.
  5. Caessens, P. W. J. R., Gruppen, H., Slangen, C. J., Visser, S., & Voragen, A. G. J. (1999). Functionality of β- 263 casein peptides: Importance of amphipathicity for emulsion-stabilizing properties. Journal of Agricultural and 264 Food Chemistry, 47, 1856-1862. open in new tab
  6. Dickinson, E. (1997). Enzymatic crosslinking as a tool for food colloid rheology control and interfacial 266 stabilization. Trends in Food Science and Technology, 8, 334-339. open in new tab
  7. Dickinson, E. (2006). Colloid science of mixed ingredients. Soft Matter, 2, 642-652. open in new tab
  8. Dickinson, E. (2010). Flocculation of protein-stabilized oil-in-water emulsions. Colloids and Surfaces B: 269 Biointerfaces, 81, 130-140. open in new tab
  9. Dickinson, E., Horne, D. S., Pinfield, V. J., & Leermakers, F. A. M. (1997). Self-consistent-field modelling of 271 casein adsorption. Comparison of results for αs1-casein and -casein. Journal of the Chemical Society, 272 open in new tab
  10. Faraday Transactions, 93, 425-432. open in new tab
  11. Dupont, D. (2017). Peptidomic as a tool for assessing protein digestion. Current Opinion in Food Science, 16, 274 53-58. open in new tab
  12. Dupont, D., Rolet-Repecaud, O., & Senocq, D. (2003). A new approach to monitoring proteolysis phenomena 276 using antibodies specifically directed against the enzyme cleavage site on its substrate. Analytical 277 Biochemistry, 317, 240-246. open in new tab
  13. Faergemand, M., Murray, B. S., Dickinson, E., & Qvist, K. B. (1999). Cross-linking of adsorbed casein films with 279 transglutaminase. International Dairy Journal, 9, 343-346. open in new tab
  14. Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, 281 open in new tab
  15. C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the proteins of cows' milk -Sixth 282 revision. Journal of Dairy Science, 87, 1641-1674.
  16. Gan, J. A., Bornhorst, G. M., Henrick, B.M., & German, J.B. (2018) Protein digestion of baby foods: Study 284 approaches and implications for infant health. Molecular Nutrition & Food Research, 62, Article no: 1700231 open in new tab
  17. Griffin, M. A., Casadio, R., & Bergamini, C. M. (2002). Transglutaminases: nature's biological glues. Biochemical 286 Journal, 368, 377-396. open in new tab
  18. HadjSadok, A., Pitkowski, A., Nicolai, T., Benyahia, L., & Moulai-Mostefa, N. (2008). Characterisation of sodium 288 caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food 289 open in new tab
  19. Hydrocolloids, 22, 1460-1466
  20. Huppertz, T., Gazi, I., Luyten, H., Nieuwenhuijse, H., Alting, A., & Schokker, E. (2017). Hydration of casein 291 micelles and caseinates: Implications for casein micelle structure. International Dairy Journal, 74, 1-11. open in new tab
  21. Huppertz, T., Fox, P. F., & Kelly, A. L. (2018). The caseins: Structure, stability, and functionality. In R. Y. Yada 293 (Ed.), Proteins in Food Processing (Second Edition) (pp. 49-92). Duxford: Woodhead Publishing. open in new tab
  22. Johansson, A., Lugand, D., Rolet-Repecaud, O., Molle, D., Delage, M. M., Peltre, G., Marchesseau, S., Leonil, 295 open in new tab
  23. J., & Dupont, D. (2009). Epitope characterization of a supramolecular protein assembly with a collection of 296 monoclonal antibodies: The case of casein micelle. Molecular Immunology, 46, 1058-1066.
  24. Juvonen, K. R., Macierzanka, A., Lille, M. E., Laaksonen, D. E., Mykkänen, H. M., Niskanen, L. K., Pihlajamäki, 298 open in new tab
  25. J., Mäkelä, K., Mills, C. E. N., Mackie, A. R., Malcolm, P., Herzig, K.-H., Poutanen, K. S., & Karhunen, L. J. 299 (2015). Cross-linking of sodium caseinate structured emulsion with transglutaminase alters the postprandial 300 metabolism and appetite responses in healthy young individuals. British Journal of Nutrition, 114, 418-429.
  26. Lucey, J. A., Srinivasan, M., Singh, H., & Munro, P. A. (2000). Characterization of commercial and experimental 302 sodium caseinates by multiangle laser light scattering and size-exclusion chromatography. Journal of 303 Agricultural and Food Chemistry, 48, 1610-1616. open in new tab
  27. Macierzanka, A., Sancho, A. I., Mills, E. N. C., Rigby, N. M., & Mackie, A. R. (2009). Emulsification alters 305 simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter, 5, 538-550. open in new tab
  28. Macierzanka A., Bordron F., Rigby N. M., Mills E. N. C., Lille M., Poutanen K., & Mackie A. R. (2011). open in new tab
  29. Transglutaminase cross-linking kinetics of sodium caseinate is changed after emulsification. Food 308 open in new tab
  30. Hydrocolloids, 25, 843-850.
  31. Macierzanka, A., Böttger, F., Rigby, N. M., Lille, M., Poutanen, K., Mills, E. N. C., & Mackie A. R. (2012). open in new tab
  32. Enzymatically structured emulsions in simulated gastrointestinal environment: Impact on interfacial 311 proteolysis and diffusion in intestinal mucus. Langmuir, 28, 17349-17362. open in new tab
  33. Mackie, A. R., Mingins J., & North, A. N. (1991). Characterisation of adsorbed layers of a disordered coil protein 313 on polystyrene latex. Journal of the Chemical Society, Faraday Transactions, 87, 3043-3049. open in new tab
  34. Monogioudi, E., Faccio, G., Lille, M., Poutanen, K., Buchert, J., & Mattinen, M.-L. (2011). Effect of enzymatic 315 cross-linking of β-casein on proteolysis by pepsin. Food Hydrocolloids, 25, 71-81. open in new tab
  35. Senocq, D., Dupont, D., Rolet-Repecaud, O., & Levieux, D. (2002). ELISA for monitoring the cleavage of beta- 317 casein at site Lys(28)-Lys(29) by plasmin during Comte cheese ripening. Journal of Dairy Research, 69, 491- 318 500. open in new tab
  36. Singh, H., & Ye, A. Q. (2013). Structural and biochemical factors affecting the digestion of protein-stabilized 320 emulsions. Current Opinion in Colloid & Interface Science, 18, 360-370. open in new tab
Verified by:
Gdańsk University of Technology

seen 151 times

Recommended for you

Meta Tags