Best results in : Research Potential Pokaż wszystkie wyniki (3)
Search results for: INCIDENCE COLORING
-
Zespół Algorytmów i Modelowania Systemów
Research PotentialStudiowanie problemów i modeli teoriografowych ma na celu badanie złożoności obliczeniowej uogólnień problemu klasycznego kolorowania wierzchołków i krawędzi grafu znajdujących zastosowania w modelowaniu praktycznych problemów oraz badanie nowych miar oceny skuteczności algorytmów. W zakresie szeregowania zadań badania koncentrują się na konstrukcji harmonogramów optymalnych z punktu widzenia długości harmonogramu i średniego czasu...
-
Katedry Chemii Organicznej
Research PotentialSynteza nowych związków organicznych w szczególności posiadających aktywność biologiczną. Opracowywanie i sprawdzanie w praktyce nowych metod syntezy związków organicznych. Inżynieria kryształów oraz zastosowanie dichroizmu kołowego. Badanie czynności optycznej związków konfiguracyjnie labilnych.
-
Zespół Katedry Fizyki Teoretycznej i Informatyki Kwantowej
Research PotentialPrace naukowe prowadzone w Katedrze dotyczą współczesnych zagadnień fizyki teoretycznej i informatyki kwantowej. W ramach współpracy międzynarodowej stworzony został w Katedrze program komputerowy umożliwiający obliczanie relatywistycznych przejść w atomach i jonach. Jego celem jest dostarczenie danych atomowych potrzebnych do interpretacji pomiarów plazmy astrofizycznej i laboratoryjnej. Dane atomowe obejmują nie tylko siły oscylatorów...
Other results Pokaż wszystkie wyniki (4)
Search results for: INCIDENCE COLORING
-
Interval incidence coloring of subcubic graphs
PublicationIn this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is N P-complete, and they asked if χii(G) ≤ 2∆(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with ∆(G) = 3.
-
Interval incidence coloring of bipartite graphs
PublicationIn this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic...
-
On incidence coloring of coloring of complete multipartite and semicubic bipartite graphs
PublicationIn the paper, we show that the incidence chromatic number of a complete k-partite graph is at most ∆+2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to ∆+1 if and only if the smallest part has only one vertex.
-
Interval incidence graph coloring
PublicationIn this paper we introduce a concept of interval incidence coloring of graphs and survey its general properties including lower and upper bounds on the number of colors. Our main focus is to determine the exact value of the interval incidence coloring number χii for selected classes of graphs, i.e. paths, cycles, stars, wheels, fans, necklaces, complete graphs and complete k-partite graphs. We also study the complexity of the...