Best results in : Research Potential Pokaż wszystkie wyniki (2)
Search results for: LEFSCHETZ NUMBERS
-
Zespół Katedry Równań Różniczkowych i Zastosowań Matematyki
Research Potential* topologiczne niezmienniki w teorii układów dynamicznych i ich zastosowania * teoria punktów stałych i periodycznych * metody matematyczne w kardiologii * miary złożoności i ich zastosowania * modele strukturalne z dyfuzją i warunkami brzegowymi Fellera * modelowanie ekspresji genu białka Hes1 * równania McKendrick-von Foerster z warunkiem odnowy * modelowanie termicznej ablacji za pomocą równania bio-przewodnictwa ciepła * soczewkowanie...
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Research PotentialW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
Other results Pokaż wszystkie wyniki (18)
Search results for: LEFSCHETZ NUMBERS
-
Generating sequences of Lefschetz numbers of iterates
PublicationDu, Huang and Li showed in 2003 that the class of Dold–Fermat sequences coincides with the class of Newton sequences, which are defined in terms of socalled generating sequences. The sequences of Lefschetz numbers of iterates form an important subclass of Dold–Fermat (thus also Newton) sequences. In this paper we characterize generating sequences of Lefschetz numbers of iterates.
-
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublicationLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
Periodic expansion in determining minimal sets of Lefschetz periods for Morse–Smale diffeomorphisms
PublicationWe apply the representation of Lefschetz numbers of iterates in the form of periodic expansion to determine the minimal sets of Lefschetz periods of Morse–Smale diffeomorphisms. Applying this approach we present an algorithmic method of finding the family of minimal sets of Lefschetz periods for Ng, a non-orientable compact surfaces without boundary of genus g. We also partially confirm the conjecture of Llibre and Sirvent (J Diff...