Best results in : Research Potential Pokaż wszystkie wyniki (3)
Search results for: MAGNETIC SUSCEPTIBILITIES
-
Zespół Katedry Fizyki Atomowej, Molekularnej i Optycznej
Research PotentialKatedra Fizyki Atomowej, Molekularnej i Optycznej specjalizuje się w badaniach naukowych w zakresie: * fizyki zderzeń elektronowych * teoretycznej fizyki atomowej i molekularnej * doświadczalnej optyki kryształów
-
Zespół Fizyki Ciała Stałego
Research PotentialTematyka badawcza Katedry Fizyki Ciała Stałego obejmuje wytwarzanie i badanie materiałów dla energetyki (m.in. nanostruktury, sensory) o innowacyjnych właściwościach fizyko-chemicznych, tj: * kryształy, polikryształy, ceramika, szkło * materiały objętościowe, cienkie warstwy, nanomateriały * materiały metaliczne, półprzewodnikowe, nadprzewodnikowe, izolatory Tematyka badawcza obejmuje również badania symulacyjne i obliczeniowe...
-
Zespół Biomateriałów
Research PotentialInżynieria i technologia biomateriałów, inżynieria powierzchni, wytwarzanie implantów metalowych, rozwój materiałów odpornych na korozję
Other results Pokaż wszystkie wyniki (9)
Search results for: MAGNETIC SUSCEPTIBILITIES
-
Static electric and magnetic multipole susceptibilities for Dirac one-electron atoms in the ground state
PublicationWe present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range $1\leq Z\leq137$. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities $\alpha_{\mathrm{E}L\to\mathrm{E}L}$ and magnetizabilities (magnetic susceptibilities) $\chi_{\mathrm{M}L\to\mathrm{M}L}$...
-
Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates
PublicationIn this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ_{M1→E2}) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 \leqslant Z \leqslant 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid...
-
Static magnetic multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
PublicationWe study far- and near-field magnetic and electric multipole moments induced in the ground state of the Dirac one-electron atom placed in a weak 2L-pole magnetostatic field. The analysis is carried out within the framework of the first-order Rayleigh-Schrödinger perturbation theory, with the use of the Sturmian expansion of the generalized Dirac-Coulomb Green function [Szmytkowski, J. Phys. B 30, 825 (1997);J. Phys. B 30, 2747(E)...
-
Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
PublicationThe ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$ polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997); erratum R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 2747 (1997)] is used to derive closed-form analytical...
-
Relativistic two-dimensional hydrogen-like atom in a weak magnetic field
PublicationA two-dimensional (2D) hydrogen-like atom with a relativistic Dirac electron, placed in a weak, static, uniform magnetic field perpendicular to the atomic plane, is considered. Closed forms of the first- and second-order Zeeman corrections to energy levels are calculated analytically, within the framework of the Rayleigh–Schrödinger perturbation theory, for an arbitrary electronic bound state. The second-order calculations are...