Search results for: MULTICLASS ADABOOST CLASSIFIER - Bridge of Knowledge

Search

Search results for: MULTICLASS ADABOOST CLASSIFIER

Best results in : Research Potential Pokaż wszystkie wyniki (23)

Search results for: MULTICLASS ADABOOST CLASSIFIER

  • Inteligentne Systemy Interaktywne

    Naturalne interfejsy, umożliwiające inteligentną interakcję człowiek-maszyna z możliwością oddziaływania na możliwie wszystkie zmysły człowieka równocześnie i bez potrzeby jego wcześniejszego szkolenia w zakresie używania typowych urządzeń zewnętrznych komputera, w tym z wykorzystaniem metod automatycznego rozpoznawania i syntezy mowy, biometrii, proaktywnych (samo-wykonywalnych) dokumentów elektronicznych, rozpoznawania emocji...

  • Zespół Inżynierii Biomedycznej

    Inżynieria biomedyczna stanowi nową interdyscyplinarną dziedzinę wiedzy zlokalizowaną na pograniczu nauk technicznych, medycznych i biologicznych. Według opinii WHO (World Health Organization) można ją zaliczyć do głównych (obok inżynierii genetycznej) czynników decydujących o postępie współczesnej medycyny. Rosnące znaczenie kształcenia w zakresie INŻYNIERII BIOMEDYCZNEJ wynika z faktu, że specjaliści tej dyscypliny są potrzebni...

  • Zespół Inżynierii Biomedycznej

    Inżynieria biomedyczna stanowi nową interdyscyplinarną dziedzinę wiedzy zlokalizowaną na pograniczu nauk technicznych, medycznych i biologicznych. Według opinii WHO (World Health Organization) można ją zaliczyć do głównych (obok inżynierii genetycznej) czynników decydujących o postępie współczesnej medycyny. Rosnące znaczenie kształcenia w zakresie INŻYNIERII BIOMEDYCZNEJ wynika z faktu, że specjaliści tej dyscypliny są potrzebni...

Best results in : Business Offer Pokaż wszystkie wyniki (5)

Search results for: MULTICLASS ADABOOST CLASSIFIER

Other results Pokaż wszystkie wyniki (129)

Search results for: MULTICLASS ADABOOST CLASSIFIER

  • Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition

    The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...

    Full text to download in external service

  • Two Stage SVM and kNN Text Documents Classifier

    Publication

    - Year 2015

    The paper presents an approach to the large scale text documents classification problem in parallel environments. A two stage classifier is proposed, based on a combination of k-nearest neighbors and support vector machines classification methods. The details of the classifier and the parallelisation of classification, learning and prediction phases are described. The classifier makes use of our method named one-vs-near. It is...

  • Improving Effectiveness of SVM Classifier for Large Scale Data

    The paper presents our approach to SVM implementation in parallel environment. We describe how classification learning and prediction phases were pararellised. We also propose a method for limiting the number of necessary computations during classifier construction. Our method, named one-vs-near, is an extension of typical one-vs-all approach that is used for binary classifiers to work with multiclass problems. We perform experiments...

    Full text to download in external service

  • Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features

    Publication

    - Year 2016

    This paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...

    Full text to download in external service

  • Comparative Analysis of Text Representation Methods Using Classification

    Publication

    In our work, we review and empirically evaluate five different raw methods of text representation that allow automatic processing of Wikipedia articles. The main contribution of the article—evaluation of approaches to text representation for machine learning tasks—indicates that the text representation is fundamental for achieving good categorization results. The analysis of the representation methods creates a baseline that cannot...

    Full text to download in external service