Filters
total: 14
Best results in : Research Potential Pokaż wszystkie wyniki (13)
Search results for: domination number
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Research Potential* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
-
Zespół Algorytmów i Modelowania Systemów
Research PotentialStudiowanie problemów i modeli teoriografowych ma na celu badanie złożoności obliczeniowej uogólnień problemu klasycznego kolorowania wierzchołków i krawędzi grafu znajdujących zastosowania w modelowaniu praktycznych problemów oraz badanie nowych miar oceny skuteczności algorytmów. W zakresie szeregowania zadań badania koncentrują się na konstrukcji harmonogramów optymalnych z punktu widzenia długości harmonogramu i średniego czasu...
-
Zespół Fizyki Materii Molekularnej
Research PotentialGłówną tematyką badań Zespołu Fizyki Materii Molekularnej jest wyjaśnianie struktury i własności fizycznych układów molekularnych oraz hybrydowych (materiał organiczny / materiał nieorganiczny)
Best results in : Business Offer Pokaż wszystkie wyniki (1)
Search results for: domination number
-
GUT LightLab [Laboratorium badawcze światła]
Business OfferTBC Celem Laboratorium Światła (z ang. GUT LightLab), jako placówki międzydyscyplinarnej, jest prowadzenie na wysokim poziomie badań podstawowych oraz badań stosowanych z pogranicza wielu dziedzin, w aspekcie odziaływania Światła, takich jak: Ochrona Środowiska, Medycyna, Zrównoważony Rozwój, Architektura Budowli, Architektura Dziedzictwa, Architektura Krajobrazu, Urbanistyka, Architektura Wnętrz, System znajdowania drogi (z ang....
Other results Pokaż wszystkie wyniki (102)
Search results for: domination number
-
On trees with double domination number equal to 2-domination number plus one
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...
-
On trees with double domination number equal to total domination number plus one
PublicationA total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...
-
Isolation Number versus Domination Number of Trees
PublicationIf G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....
-
On trees with double domination number equal to 2-outer-independent domination number plus one
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...
-
Complexity Issues on of Secondary Domination Number
PublicationIn this paper we study the computational complexity issues of the problem of secondary domination (known also as (1, 2)-domination) in several graph classes. We also study the computational complexity of the problem of determining whether the domination and secondary domination numbers are equal. In particular, we study the influence of triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for finding...