Search results for: photovoltaic systems , renewable energy sources , accuracy , machine learning algorithms , machine learning , artificial neural networks , predictive models - Bridge of Knowledge

Search

Search results for: photovoltaic systems , renewable energy sources , accuracy , machine learning algorithms , machine learning , artificial neural networks , predictive models

Best results in : Research Potential Pokaż wszystkie wyniki (109)

Search results for: photovoltaic systems , renewable energy sources , accuracy , machine learning algorithms , machine learning , artificial neural networks , predictive models

  • Katedra Energoelektroniki i Maszyn Elektrycznych

    * Modelowania, projektowania i symulacji przekształtników energoelektronicznych * Sterowania i diagnostyki przekształtników energoelektronicznych * Kompatybilności elektromagnetycznej przekształtników i regulowanych napędów elektrycznych * Jakości energii elektrycznej * Modelowania, projektowania i diagnostyki maszyn elektrycznych i transformatorów * Projektowania czujników i silników piezoelektrycznych * Technik CAD i CAE dla...

  • Katedra Automatyki i Energetyki

    Mikroprocesorowe urządzenia pomiarowo-rejestrujące i systemy monitorowania wykorzystujące technologie sieciowe, systemy sterowania urządzeniami i procesami technologicznymi. Systemy sterowania w obiektach energetyki odnawialnej, skupionych i rozproszonych. Modelowanie i symulacja obiektów dynamicznych, procesów oraz systemów sterowania i kontroli; projektowanie interfejsów operatorskich. Systemy elektroenergetyczne i automatyki...

  • Katedra Automatyki Napędu Elektrycznego i Konwersji Energii

    * nieliniowe sterowanie maszynami elektrycznymi * napędy elektryczne o sterowaniu bez czujnikowym * sterowanie przekształtnikami energoelektronicznymi, w tym przekształtnikami na średnie napięcia i przekształtnikami sieciowymi * energoelektroniczne układy przetwarzania energii w odnawialnych źródłach energii * projektowanie i badanie falowników i przetwornic * projektowanie układów sterowania mikroprocesorowego z wykorzystaniem...

Best results in : Business Offer Pokaż wszystkie wyniki (45)

Search results for: photovoltaic systems , renewable energy sources , accuracy , machine learning algorithms , machine learning , artificial neural networks , predictive models

Other results Pokaż wszystkie wyniki (15991)

Search results for: photovoltaic systems , renewable energy sources , accuracy , machine learning algorithms , machine learning , artificial neural networks , predictive models

  • Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output

    This research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...

    Full text to download in external service

  • Machine Learning in Multi-Agent Systems using Associative Arrays

    Publication

    - PARALLEL COMPUTING - Year 2018

    In this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...

    Full text available to download

  • Deep Learning Basics 2023/24

    e-Learning Courses
    • K. Draszawka

    A course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.

  • Deep neural networks for data analysis 24/25

    e-Learning Courses
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...

  • From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition

    Publication

    Recently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...

    Full text available to download