Laboratorium Akustyki Fonicznej - Administrative Units - Bridge of Knowledge

Search

Laboratorium Akustyki Fonicznej

Filters

total: 348

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Publications

Year 2023
  • Applying the Lombard Effect to Speech-in-Noise Communication
    Publication

    - Electronics - Year 2023

    This study explored how the Lombard effect, a natural or artificial increase in speech loudness in noisy environments, can improve speech-in-noise communication. This study consisted of several experiments that measured the impact of different types of noise on synthesizing the Lombard effect. The main steps were as follows: first, a dataset of speech samples with and without the Lombard effect was collected in a controlled setting;...

    Full text available to download

  • Combining MUSHRA Test and Fuzzy Logic in the Evaluation of Benefits of Using Hearing Prostheses
    Publication

    - Electronics - Year 2023

    Assessing the effectiveness of hearing aid fittings based on the benefits they provide is crucial but intricate. While objective metrics of hearing aids like gain, frequency response, and distortion are measurable, they do not directly indicate user benefits. Hearing aid performance assessment encompasses various aspects, such as compensating for hearing loss and user satisfaction. The authors suggest enhancing the widely used...

    Full text available to download

Year 2022
Year 2021
  • Classifying Emotions in Film Music - A Deep Learning Approach

    The paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...

    Full text available to download

  • Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
    Publication

    - Journal of the Acoustical Society of America - Year 2021

    The goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...

    Full text available to download

  • KLASYFIKACJA EMOCJI W MUZYCE FILMOWEJ Z WYKORZYSTANIEM TESTÓW SUBIEKTYWNYCH

    Celem referatu było przedstawienie testów odsłuchowych, w których zadaniem osób ankietowanych było przypisanie danego fragmentu muzycznego do odpowiedniej klasy emocji. Kolejne kroki eksperymentu obejmowały wybór muzyki filmowej do testów (baza Epidemic Sound), przygotowanie założeń ankiety oraz modelu emocji wykorzystywanych w testach odsłuchowych, jak również konstrukcj ˛e ankiety. Ankieta została zrealizowana za pomoc ˛a formularzy...

    Full text available to download

  • Techniki wielokanałowe wykorzystywane w koncertach i nagraniach muzycznych na odległość
    Publication

    - Year 2021

    W czasie pandemii koronawirusa COVID-19 nowego znaczenia nabrały możliwości transmisji dźwięku z obrazem – zwłaszcza do pracy zdalnej, która w przypadku muzyków jest szczególnym wyzwaniem zarówno w kontekście wspólnych ćwiczeń i prób, jak i koncertów. Wynikła konieczność wieloźródłowego połączenia ujawniła potrzebę uprzestrzennienia dźwięku w celu łatwiejszej lokalizacji źródeł dźwięku. Tworzenie zdalnych nagrań muzycznych stało...

    Full text to download in external service

  • Weakly-Supervised Word-Level Pronunciation Error Detection in Non-Native English Speech
    Publication
    • D. Korzekwa
    • J. Lorenzo-trueba
    • T. Drugman
    • S. Calamaro
    • B. Kostek

    - Year 2021

    We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced...

    Full text available to download

Year 2020
  • A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
    Publication
    • G. Tamulevicius
    • G. Korvel
    • A. B. Yayak
    • P. Treigys
    • J. Bernataviciene
    • B. Kostek

    - Electronics - Year 2020

    In this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...

    Full text available to download

  • Analiza ruchu drogowego z wykorzystaniem analizy akustycznej

    Tematyka pracy porusza zagadnienia dotyczące pozyskiwania informacji o ruchu drogowym z wykorzystaniem monitoringu akustycznego. Przybliżono podstawowe techniki nadzoru nad ruchem drogowym. Przedstawiono założenia akustycznego detektora ruchu i zbadano jego skuteczność na trzech płaszczyznach działania – zliczania pojazdów, klasyfikacji rodzajowej i klasyfikacji warunków pogodowych panujących na nawierzchni

    Full text to download in external service

  • Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
    Publication

    The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...

    Full text available to download

  • Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
    Publication

    The purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....

    Full text available to download

  • Evaluation of Lombard Speech Models in the Context of Speech in Noise Enhancement
    Publication

    - IEEE Access - Year 2020

    The Lombard effect is one of the most well-known effects of noise on speech production. Speech with the Lombard effect is more easily recognizable in noisy environments than normal natural speech. Our previous investigations showed that speech synthesis models might retain Lombard-effect characteristics. In this study, we investigate several speech models, such as harmonic, source-filter, and sinusoidal, applied to Lombard speech...

    Full text available to download

  • Improving Objective Speech Quality Indicators in Noise Conditions
    Publication

    - Year 2020

    This work aims at modifying speech signal samples and test them with objective speech quality indicators after mixing the original signals with noise or with an interfering signal. Modifications that are applied to the signal are related to the Lombard speech characteristics, i.e., pitch shifting, utterance duration changes, vocal tract scaling, manipulation of formants. A set of words and sentences in Polish, recorded in silence,...

    Full text to download in external service

  • Investigating Feature Spaces for Isolated Word Recognition
    Publication
    • P. Treigys
    • G. Korvel
    • G. Tamulevicius
    • J. Bernataviciene
    • B. Kostek

    - Year 2020

    The study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...

    Full text to download in external service

  • Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing

    Developing signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....

    Full text available to download

  • Ranking Speech Features for Their Usage in Singing Emotion Classification
    Publication

    - Year 2020

    This paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...

    Full text available to download

Year 2019
Year 2018